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Abstract—We consider a joint scheduling-and-power-allocation
problem of a downlink cellular system. The system consists of two
groups of users: real-time (RT) and non-real-time (NRT) users.
Given an average power constraint on the base station, the problem
is to find an algorithm that satisfies the RT hard deadline constraint
and NRT queue stability constraint. We propose two sum-rate-
maximizing algorithms that satisfy these constraints as well as
achieving the system’s capacity region. In both algorithms, the
power allocation policy has a closed-form expression for the two
groups of users. However, interestingly, the power policy of the RT
users, which we call the Lambert-power policy, differs in structure
from the water-filling policy for the NRT users. The first algorithm
is optimal for the on–off channel model with a polynomial-time
scheduling complexity in the number of RT users. The second, on
the other hand, works for any channel fading model, which is shown
through simulations to have an average complexity that is close to
linear. We also show the superiority of the proposed algorithms
over existing approaches using extensive simulations.

Index Terms—Hard deadlines, lyapunov optimization, power
allocation, real-time data, resource allocation, scheduling,
throughput-optimal scheduling.

I. INTRODUCTION

QUALITY-OF-SERVICE-BASED scheduling has received
much attention recently. It is shown in [1] and [2] that

quality-of-service-aware scheduling results in a better perfor-
mance in LTE systems compared to best-effort techniques. De-
pending on the application, quality-of-service (QoS) metrics
capture long-term throughput [3], short-term throughput [4],
per-user average delay [5], average number of packets missing
a specific deadline [6], or the average time a user waits to re-
ceive its data [7]. Real-time audio and video applications require
algorithms that take hard deadlines into consideration. This is
because if a real-time packet is not transmitted on time, the cor-
responding user might experience intermittent connectivity of
its audio or video.

The problem of scheduling for wireless systems under hard-
deadline constraints has been widely studied in the literature
(see, e.g., [8] and [9] for a survey). In [6] the authors consider
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binary erasure channels and present a sufficient and necessary
condition to determine if a given problem is feasible. The work is
extended in three different directions. The first direction studies
the problem under delayed feedback [2]. The second considers
general channel fading models [10]. The third studies multi-
cast video packets that have strict deadlines and utilize network
coding to improve the overall network performance [11], [12].
Unlike the time-framed assumption in the previous works, the
authors of [13] assume that arrivals and deadlines do not have
to occur at the edges of a time frame. They present a scheduling
algorithm under the on-off channel fading model and present its
achievable region under general arrivals and deadline patterns
but with a fixed power transmission. In [14] the authors study
the scheduling problem in the presence of real-time and non-
real-time data. Unlike real-time data, non-real-time data do not
have strict deadlines but have an implicit stability constraint on
the queues. Using the dual function approach, the problem was
decomposed into an online algorithm that guarantees network
stability and satisfies the real-time users’ constraint.

Power allocation has not been considered for RT users in the
literature, to the best of our knowledge. In this paper, we study
a throughput maximization problem in a downlink cellular sys-
tem serving RT and NRT users simultaneously. We formulate
the problem as a joint scheduling-and-power-allocation prob-
lem to maximize the sum throughput of the NRT users sub-
ject to an average power constraint on the base station (BS),
as well as a delivery ratio requirement constraint for each RT
user. The delivery ratio constraint requires a minimum ratio
of packets to be transmitted by a hard deadline, for each RT
user. The main challenge in this problem is the power allo-
cation for packets that have deadlines. It is well known, in the
literature, that the water-filling power allocation algorithm max-
imizes the rate for users with no hard deadlines. However, when
hard deadlines are introduced, it is not clear if the power allo-
cation is still optimal. In addition, another major challenge is to
trade off the performance of the real-time (RT) users with hard
deadlines as well as non-real-time (NRT) with high data rate
requirements.

Perhaps the closest to our work are references [14] and [15].
The former does not consider power allocation, while the latter
assumes that only one user can be scheduled per time slot. The
contributions in this paper are as follows:

1) We present two scheduling-and-power-allocation algo-
rithms. The first is for the on-off channel fading model
while the second is for the continuous channel fading
model.
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2) We show that both algorithms are optimal. That is, both
satisfy the average power constraint, the delivery ratio re-
quirement constraint, in addition to achieving the capacity
region. However, the complexity of the first is polynomial
in the number of users, while the second is shown to have
an average complexity that is close-to-linear.

3) We present closed-form expressions for the power alloca-
tion policy used by both algorithms. It is shown that the
power allocation expressions for the RT and NRT users
have a different structure.

4) Through simulations, we show the complexity and
throughput performances of the proposed algorithms over
baseline ones.

The rest of this paper is organized as follows. In Section II
we present the system model and the underlying assumptions.
The problem is formulated in Section III. For the on-off chan-
nel model, the proposed power-allocation and scheduling algo-
rithm as well as its optimality is presented in Section IV. In
Section V we present the optimal algorithm for the continuous
channel model. The capacity region of the problem is presented
in Section VI. Simulation results and comparisons with base-
line approaches is presented in Section VII. Finally, the paper
is concluded in Section VIII.

II. SYSTEM MODEL

We assume a time slotted downlink system with slot du-
ration T seconds. The system has a single base station (BS)
having access to a single frequency channel. The interfer-
ence coming from all other neighboring BSs is assumed to be
treated as noise. There are N users in the system indexed by
the set N � {1, . . . , N}. The set of users is divided into two
sets: the real-time (RT) usersNR � {1, . . . , NR}, and the non-
real-time (NRT) users NNR � {NR + 1, . . . , N} with NR and
NNR � N −NR denoting the number of RT and NRT users,
respectively.

We model the channel between the BS and the ith user as
a fading channel with power gain γi(k). The distribution and
statistics of γi(k) is arbitrary and need not be known to the
BS nor to any of the users. In this paper, we present the prob-
lem for the on-off channel fading case in Sections III and IV
and then we generalize this to the continuous fading case in
Section V. The on-off model [6] corresponds to the well-known
binary erasure channel model and models whether the channel
is in outage or not. While the continuous fading model is more
general and captures all independent and identically distributed
channel distributions. Its solution, as will be seen, has a higher
complexity.

For the on-off channel model, if channel i is in a non-outage
state during the kth slot then γi(k) = 1, otherwise γi(k) = 0.
Channel gains are fixed over the whole slot and change inde-
pendently in subsequent slots and are independent across users.
Hence, the channel gain follows a Bernoulli process. Chan-
nels with a more general fading model will be discussed in
Section V. Moreover, γi(k) is known to the BS, for all i ∈ N ,
at the beginning of the each slot.

A. Packet Arrival Model

Let ai(k) ∈ {0, 1} be the indicator of a packet arrival for user
i ∈ N at the beginning of slot k. This packet arrival model cap-
tures systems that have arrivals during the time slot edges. For
these kinds of systems, packets arriving between the beginning
and the end of slot k − 1 are treated as packets arrived at the be-
ginning of slot k. {ai(k)} is assumed to be a Bernoulli process
with rate λi packets per slot and assumed to be independent
across all users in the system. Packets arriving at the BS for
the RT users are called RT packets. RT packets have a strict
transmission deadline. If an RT packet is not transmitted by this
deadline, this packet is dropped out of the system and does not
contribute towards the throughput of the user. However, RT user
i is satisfied if it receives, on average, more than qi% of its
total number of packets. We refer to this constraint as the QoS
constraint for user i. In this paper, we assume that RT packets
arriving at the beginning of the kth slot have their deadline at
the end of this slot.

On the other hand, packets arriving to the BS for the NRT
users can be transmitted at any point in time. Thus, packets for
NRT user i are stored, at the BS, at user i’s (infinite-sized [16])
buffer and served on a first-come-first-serve basis. Since the
arrival rate λi , for NRT user i, might be higher than what the
system can support, we define ri(k) as an admission controller
for user i at slot k. At the beginning of slot k, the BS sets
ri(k) to 1 if the BS decides to admit user i’s arrived packet
to the buffer, and to 0 otherwise. An NRT packet that is not
admitted to the buffer is dropped from the system and assumed
to be retransmitted by upper layers. The time-average number
of packets admitted to user i’s buffer is

Ai � lim sup
K→∞

1
K

K∑

k=1

E [ri(k)] , i ∈ NNR . (1)

And the queue associated with NRT user i is given by

Qi(k + 1) = (Qi(k) + Lri(k)− μi (k) Ri(k))+ , i ∈ NNR ,
(2)

where Ri(k) and μi (k) are, respectively, the transmission rate
and time duration allocated to user i ∈ N at slot k while L is
the number of bits per packet that is assumed to be fixed for all
packets in the system. The extension to multiple packet types of
different lengths will be addressed in Section V-C. For ease of
presentation, we denote Q(k) � [Q1(k), . . . , QNN R (k)]T . We
note that no queues, and thus no admission controllers, are
defined for the RT users since their buffers cannot build up
due to the presence of a deadline.

B. Service Model

Following [10] we assume that more than one user can be
scheduled in one time slot. However, due to the existence of
a single frequency channel in the system, the BS transmits to
the scheduled users sequentially as shown in Fig. 1. At the
beginning of the kth slot, the BS selects a set of RT users denoted
by SR (k) ⊆ NR and a set of NRT users SNR (k) ⊆ NNR to
be scheduled during slot k. Thus a total of Nk � |Nk | users
are scheduled at slot k where Nk � SR (k) ∪ SNR (k) (Fig. 1).
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Fig. 1. In the kth time slot, the BS chooses Nk users to be scheduled. All
time slots have a fixed duration of T seconds.

Moreover, the BS assigns an amount of power Pi (k) for every
user i ∈ Nk . This dictates the transmission rate for each user
according to the channel capacity given by

Ri(k) = log2 (1 + Pi (k) γi(k)) . (3)

Finally, the BS determines the duration of time μi (k), out of the
T seconds slot duration, that will be allocated for each scheduled
user i ∈ N during the kth slot (Fig. 1). Hence, μi (k) ∈ [0, T ]
for all i ∈ N and μi (k) has to satisfy

∑
i∈N μi (k) ≤ T for

all k. The BS decides the value of for each user i ∈ N at the
beginning of slot k. Since RT users have a strict deadline, then
if an RT user is scheduled at slot k, then it should be allocated
the channel for a duration of time that allows the transmission
of the whole packet. Thus we have

μi (k) =
{ L

Ri (k) if i ∈ SR (k)
0 if i ∈ NR\SR (k)

, (4)

Equation (4) means that, depending on the transmission power,
if RT user i is scheduled at slot k, then it is assigned as much
time as required to transmit its L bits. Hence, unlike the NRT
users that have μi (k) ∈ [0, T ], μi (k) is further restricted to the
set {0, L/Ri(k)} for the RT users. In the next section we present
the problem formally.

III. PROBLEM FORMULATION FOR ON-OFF CHANNELS

We are interested in finding the scheduling and power allo-
cation algorithm that maximizes the sum-rate of all NRT users
subject to the system constraints. Without loss of optimality, in
this paper we restrict our search to slot-based algorithms which,
by definition, take the decisions only at the beginning of the
time slots.

Now define the average rate of user i ∈ NNR to be Ri �
lim infK→∞

∑K
k=1 μi (k) Ri(k)/(LTK) packets per slot. Thus

the problem is to find the scheduling, power allocation and
packet admission decisions at the beginning of each slot, that
solve the following problem

maximize
{µ(k),P(k),r(k)}∞k = 1

∑

i∈NN R

Ri, (5)

subject to ri(k) ≤ ai(k), ∀i ∈ NNR , (6)

lim sup
k→∞

E [Qi(k)] <∞ ∀i ∈ NNR , (7)

Ri ≥ λiqi , ∀i ∈ NR , (8)

lim sup
K→∞

1
KT

K∑

k=1

∑

i∈N
Pi (k) μi (k) ≤ Pavg , (9)

0 ≤ Pi (k) ≤ Pmax , ∀i ∈ N , (10)
∑

i∈N
μi (k) = T ∀k ≥ 1, (11)

0 ≤ μi (k) ≤ T ∀i ∈ N , (12)

where µ (k) � [μi(k)]i∈N , P (k) � [Pi(k)]i∈N while r (k) �
[ri(k)]i∈NN R

. Constraint (6) says that no packets should be ad-
mitted to the ith buffer if no packets arrived for user i. Constraint
(7) means that the queues of the NRT users have to be stable.
Constraint (8) indicates that the resources allocated to a RT user
i need to be such that the fraction of packets transmitted by the
deadline are greater than the required QoS qi . Constraint (9)
is an average power constraint on the BS transmission power.
Finally constraint (11) guarantees that the sum of durations of
transmission of all scheduled users does not exceed the slot du-
ration T . In addition, in this paper, we assume an NRT users’
heavy traffic regime where the scheduled NRT user, if any, has
enough packets, at each slot, to fit the whole slot duration. It will
be clear that the generalization to the non-heavy traffic regime
is possible by allowing multiple NRT users to be scheduled
but this is omitted for brevity. The equality sign “=” in (11) is
equivalent to the inequality sign “≤” in the heavy traffic regime.
We use the equality sign hereafter since it is easier to present
the proof of the algorithm. However, it should be noted that the
problem under the inequality sign follows along the same lines.

IV. PROPOSED ALGORITHM FOR ON-OFF CHANNELS

We use the Lyapunov optimization technique [17] to find and
optimal algorithm that solves (5). We do this on four steps:
i) We define, in Section IV-A, a “virtual queue” associated with
each average constraint in problem (5). This helps in decoupling
the problem across time slots. ii) In Section IV-B, we define a
Lyapunov function, its drift and a, per-slot, reward function.
The latter is proportional to the objective of (5). iii) Based
on the virtual queues and the Lyapunov function, we form an
optimization problem, for each slot k, that minimizes the drift-
minus-reward expression, the solution of which is the proposed
power allocation and scheduling algorithm. In Section IV-C, we
propose an efficient way to solve this problem optimally. iv)
Finally, we show that this minimization guarantees reaching an
optimal solution for (5), in Section IV-D.

A. Problem Decoupling Across Time Slots

We define a virtual queue associated with each RT user as
follows

Yi(k + 1) = (Yi(k) + ai(k)qi − 11i(k))+ , i ∈ NR , (13)

where 11i(k) � 11 (μi (k)) with 11(·) = 1 if its argument is non-
zero and 11(·) = 0 otherwise. For notational convenience we
denote Y(k) � [Y1(k), . . . , YNR (k)]T . Yi(k) is a measure of
how much constraint (8) is violated for user i. We will later
show a sufficient condition on Yi(k) for constraint (8) to be
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satisfied. Hence, we say that the virtual queue Yi(k) is associated
with constraint (8). Similarly, we define the virtual queue X(k),
associated with constraint (9), as

X(k + 1) =
(

X(k) +
∑

i∈N Pi (k) μi (k)
T

− Pavg

)+

. (14)

To provide a sufficient condition on the virtual queues to satisfy
the corresponding constraints, we use the following definition
of mean rate stability of queues [17, Definition 1] to state the
lemma that follows.

Definition 1: A random sequence {Yi(k)}∞k=0 is said to be
mean rate stable if and only if lim supK→∞ E [Yi(K)] /K = 0
holds.

Lemma 1: If, for some i ∈ NNR , {Yi(k)}∞k=0 is mean rate
stable, then constraint (8) is satisfied for user i.

Proof: Proof follows along the lines of Lemma 3 in [17]. �
Lemma 1 shows that when the virtual queue Yi(k) is mean

rate stable, then constraint (8) is satisfied for user i ∈ NR . Sim-
ilarly, if {X(k)}∞k=0 is mean rate stable, then constraint (9) is
satisfied. Thus, our objective would be to devise an algorithm
that guarantees the mean rate stability of Yi(k) for all RT users
as well as the mean rate stability for X(k).

B. Applying the Lyapunov Optimization

The quadratic Lyapunov function is defined as

Lyap (U(k)) � 1
2

∑

i∈NR

Y 2
i (k) +

1
2

∑

i∈NN R

Q2
i (k) +

1
2
X2(k),

(15)
where U(k) � (Y(k),Q(k),X(k)), and the Lyapunov drift
as Δ(k) � EU(k) [Lyap (U(k + 1))− Lyap (U(k))]Δ(k) �
EU(k) [Lyap (U(k + 1))− Lyap (U(k))] where EU(k) [x] �
E [x|U(k)] is the conditional expectation of the random
variable x given U(k). Squaring (2), (13) and (14) taking the
conditional expectation then summing over i, the drift becomes
bounded by

Δ(k) ≤ C1 + Ψ(k), (16)

where

C1 �

∑
i∈NR

(
q2
i + 1

)
+ P 2

max + P 2
avg + NNR

[
L2 + T 2R2

max
]

2
(17)

and we use Rmax � log (1 + Pmax), while

Ψ(k) �
∑

i∈NR

EU(k) [Yi(k) (λiqi − 11i(k))]

+X(k)

(
∑

i∈N

EU(k) [μi (k) Pi (k)]
T

− Pavg

)

+
∑

i∈NN R

Qi(k)
(
EU(k) [Lri(k)− μi (k) Ri(k)]

)
. (18)

Since EU(k) [Lri(k)] represents the average number of bits
admitted to NRT user i’s buffer at slot k, we refer to
Bmax

∑
i∈NN R

EU(k) [Lri(k)] as the “reward term”, where
Bmax > 0 is some control parameter. We subtract this term

from both sides of (16), then use (18) and rearrange to bound
the drift-minus-reward term as

Δ(k)−Bmax

∑

i∈NN R

EU(k) [Lri(k)] ≤ C1 −X(k)Pavg

− EU(k)

[
∑

i∈NR

ΨR(i, k)

]
− EU(k)

[
∑

i∈NN R

ΨNR(i, k)μi (k)

]

+ EU(k)

[
∑

i∈NN R

(Qi(k)−Bmax) Lri(k)

]
+
∑

i∈NR

Yi(k)λiqi ,

(19)

where ΨR(i, k) and ΨNR(i, k) are given by

ΨR(i, k) �
(

Yi(k)− L

TRi(k)
X(k)Pi (k)

)
11i(k), i ∈ NR ,

(20)

ΨNR(i, k) � Qi(k)Ri(k)− X(k)Pi (k)
T

, i ∈ NNR , (21)

respectively, where we used (4) in (20). The proposed algo-
rithm schedules the users, allocates their powers and controls
the packet admission to minimize the right-hand-side of (19)
at each slot. Since the only term in right-hand-side of (19)
that is a function in ri(k) ∀i ∈ NNR is the second-to-last
term, we can decouple the admission control problem from
the joint scheduling-and-power-allocation problem. Minimiz-
ing this term results in the following admission controller: set
ri(k) = ai(k) if Qi(k) < Bmax and 0 otherwise. Minimizing
the remaining terms yields

maximize
P(k),µ(k)

∑

i∈SR (k)

ΨR(i, k) +
∑

i∈NN R

ΨNR(i, k)μi (k)

subject to (10), (11) and (12). (22)

This is a per-slot optimization problem the solution of which
is an algorithm that minimizes the upper bound on the drift-
minus-reward term defined in (19). Next we show how to solve
this problem in an efficient way.

C. Efficient Solution for the Per-Slot Problem

We first solve for the NRT variables then use its result to solve
for the RT variables.

1) NRT Variables: To find the optimal power-allocation-
and-scheduling policy for the NRT users, we present the fol-
lowing lemma.

Lemma 2: If an NRT user i is scheduled to transmit any of
its NRT data during the kth slot, then the optimum power level
for user i with respect to (w.r.t.) problem (22) is given by

Pi (k) = min

((
TQi(k)
X(k)

− 1

)+

, Pmax

)
. (23)

Moreover, in the heavy traffic regime, the optimum NRT
user to be scheduled, if any, w.r.t. problem (22) is i∗NR �
arg maxi∈NN R Ψ∗NR(i, k), where Ψ∗NR(i, k) comes by substi-
tuting (23) in (21).
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Proof: We observe that, for any i ∈ NNR , the only term in
(22) that is a function in Pi (k) is ΨNR(i, k). Differentiating (21)
w.r.t. Pi (k) for all i ∈ NNR , equating the results to 0 and noting
the minimum and maximum power constraints (10), we get the
water-filling power allocation formula (23). This completes the
first part of the lemma.

To prove the second part, we substitute by (23) in (21) to get
Ψ∗NR(i, k). We continue the proof by contradiction. Suppose that
the optimal scheduled NRT set is given by S∗NR(k) = {i∗NR , j}
where j �= i∗NR and Ψ∗NR(j, k) < Ψ∗NR(i∗NR , k). Thus, there ex-
ists some values α > 0 and β > 0 such that the correspond-
ing scheduler would be μi∗N R

(k) = α and μj (k) = β, while
μlk (k) = 0 for all lk /∈ {i∗NR , j}. In other words, α seconds are
assigned to i∗NR and β seconds assigned to j. However, if user
i∗NR has enough backlogged data, which happens in the heavy
traffic regime, then we can increase its assigned duration to
μi∗N R

= α + β and thus set μj (k) = 0, to get an increase in the
objective of (22) by β (Ψ∗NR(i∗NR , k)−Ψ∗NR(j, k)) > 0 which
contradicts with the optimality of S∗NR(k) and completes the
proof of the lemma. �

Lemma 2 provides the optimal scheduling and power alloca-
tion policies for the NRT users w.r.t. problem (22). The lemma
shows that if any of the NRT users is going to be scheduled in
the kth slot, then only one of them is going to be scheduled.
This means that the scheduling policy for the NRT users is

μi (k) =
{

T −∑i∈S∗R (k) μi (k) i = i∗NR

0 NNR\{i∗NR}
(24)

which is a manipulation of (11). Equation (24) states that the
duration of the scheduled NRT user is equal to the time slot
duration T less the amount of time dedicated for the RT users.
Hence, the summation over i in the right side of (24) is taken
over the elements in S∗R (k), where S∗R (k) is the optimal value
of SR (k). Substituting (24) and ΨNR(i, k) in (22), the latter
becomes

maximize
μi ∗

N R
(k),

[μ i (k ) , P i (k ) ]i∈NR

∑

i∈SR (k)

ΨR(i, k) + Ψ∗NR(i∗NR , k)μi∗N R
(k)

subject to (12), (10) and μi∗N R
(k) = T −

∑

i∈SR (k)

L

Ri(k)
,

(25)

which is simpler than (22) since it is not a function in the NRT
variables except μi∗N R

(k). Finding the optimal value of μi∗N R
(k)

solves the NRT scheduling problem. We will first solve for μi (k)
for all RT users then use (24) to find μi∗N R

(k).
2) RT Variables: To find the scheduler of the RT users that

is optimal w.r.t. problem (25), we first solve for [Pi (k)]i∈NR

given a fixed set SR (k), then we discuss the scheduling policy
that solves for this set. To solve for [Pi (k)]i∈NR

, we present the
following definition then present a theorem that discusses the
optimum power allocation policy for the RT users.

Definition 2: We define the Lambert power allocation policy
for the RT users as

Pi (k) = min

⎛

⎝
T Ψ∗N R (i∗N R ,k)

X (k) − 1

W0

([
Ψ∗N R (i∗N R ,k)T

X (k) − 1
]
e−1
) − 1, Pmax

⎞

⎠ ,

(26)
i ∈ SR (k), where W0(z) is the principle branch of the Lambert
W function [18] while Ψ∗NR(i, k) is defined in Lemma 2.

Theorem 1: Given any set SR (k), if the Lambert power pol-
icy results in

∑
i∈SR (k) L/ log(1 + Pi (k)) ≤ T , then it is the

optimum RT-users’ power allocation policy given that SR (k)
is the scheduling set at slot k. Otherwise, the optimum power
allocation policy is given by

Pi (k) = exp

⎛

⎜⎝

∑
i∈SR (k)

L

T

⎞

⎟⎠− 1, i ∈ SR (k) . (27)

Proof: We prove this theorem by applying the Lagrange op-
timization [19, Ch. 5] technique to problem (25) then use the
complementary slackness condition.

Since μi (k) ≥ 0 for all i ∈ NR (see (4)), then we have the
constraint μi∗N R

(k) ≤ T always holds from (24). Thus we define
the Lagrange multiplier φ to be the multiplier associated with
the constraint μi∗N R

(k) ≥ 0. The Lagrangian becomes

Lagr �
∑

i∈SR (k)

ΨR(i, k) + (Ψ∗NR(i∗NR , k) + φ)

×
⎛

⎝T −
∑

i∈SR (k)

L

log (1 + Pi (k) γi(k))

⎞

⎠ (28)

Differentiating (28) with respect to Pi (k) and equating to 0
gives

log (1 + Pi (k) γi(k))
X(k)L

T
−

(X(k)Pi (k) /T + Ψ∗NR(i∗NR , k) + φ) γi(k)
1 + Pi (k) γi(k)

= 0. (29)

After some manipulations and denoting

φ̃ � (Ψ∗NR(i∗NR , k) + φ)T/X(k) (30)

we get

log (1 + Pi (k) γi(k)) = 1 +
φ̃γi(k)− 1

1 + Pi (k) γi(k)
� 1 + P̃ .

(31)

Thus we get P̃ eP̃ =
(
φ̃γi(k)− 1

)
e−1 which has two solutions

in P̃ (see [18]), one of them yields a negative value for Pi (k).
Hence, with the help of W0(·), which is the inverse function of
xex , we can write a unique solution for (29) as

Pi (k) =
1

γi(k)

⎡

⎣ φ̃γi(k)− 1

W0

([
φ̃γi(k)− 1

]
e−1
) − 1

⎤

⎦ , i ∈ SR (k) .

(32)
To calculate (32), we need to find the value of φ satisfying
the complementary slackness condition φμi∗N R

(k) = 0. Hence
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we have one of the two following possibilities might yield the
optimal solution: 1) setting φ = 0 and thus μi∗N R

(k) ≥ 0, or
2) setting μi∗N R

(k) = 0 and thus φ ≥ 0. If setting φ = 0 yields∑
i∈SR (k) L/ log(1 + Pi (k)) ≤ T then the Lambert power allo-

cation policy in (26) is optimum since there exists no other non-
negative value for φ that yields

∑
i∈SR (k) L/ log(1 + Pi (k)) =

T while satisfying μi∗N R
(k) = 0 (to satisfy the complemen-

tary slackness). On the other hand, if setting φ = 0 yields∑
i∈SR (k) L/ log(1 + Pi (k)) > T , then φ cannot be 0. Thus we

have μi∗N R
(k) = 0, which means that the time slot will be allo-

cated for RT users only. The corresponding value of φ should sat-
isfy

∑
i∈SR (k) L/ log(1 + Pi (k)) = T . From (32), we observe

that Pi (k) = Pj (k) for all i, j ∈ SR (k) because γi(k) = 1 for
all i ∈ SR (k). Thus we have L|SR (k) |/ log(1 + Pi (k)) = T .
This yields the power allocation policy (27) and completes the
proof. �

Theorem 1 gives closed-form expressions for the power func-
tion of the RT users given any scheduling set SR (k). To find
the optimum scheduling set SR (k) that solves problem (25),
we present the following definition then mention a theorem that
discusses this RT users’ scheduling.

Definition 3: At slot k, the set SR (k) is said to be a “candi-
date” set if and only if Yi(k) ≥ Yj (k) for all i ∈ SR (k) and all
j /∈ SR (k). Otherwise it is called a “non-candidate” set.

We note that the definition of candidate sets assumes that all
RT users have γi(k) = 1. If this assumption does not hold at
some time slot k, then we eliminate the users with γi(k) = 0
from the system for this time slot and consider only those with
γi(k) = 1.

Theorem 2: The optimal RT set that solves (25) is one of the
candidate sets.

Proof: We prove this theorem by contradiction. Suppose that
S∗R (k) is the optimal set and that it is not a candidate set. That is,
∃i ∈ SR (k) and j /∈ SR (k) such that Yi(k) < Yj (k). It is easy
to show that the Lambert power policy results in the fact that
Pi (k) depends on |SR (k) | and not onSR (k) for any i ∈ SR (k)
and any SR (k). Thus, replacing user i with user j results in
having Pj (k) = Pi (k) which means that X(k)Pj (k)μj (k) =
X(k)Pi (k) μi (k) holds. But since Yi(k) < Yj (k), swapping
the two users increases the objective function of (25) and results
in a candidate set. This contradicts with the fact that SR (k) is
optimal while being non-candidate. �

Theorem 2 says that there will be no scheduled RT users hav-
ing a value of Yj (k) smaller than any of the unscheduled RT
users. This theorem suggests an algorithm to reduce the com-
plexity of scheduling the RT users from O

(
2NR

)
to O (NR).

This algorithm is to list the RT users in a descending order of
their Yi(k). Without loss of generality, in the remaining of this
paper, we will assume that Y1 > Y2 · · · > YNR .

We now propose Algorithm 1 which is the scheduling and
power allocation algorithm for problem (5). Algorithm 1 is ex-
ecuted at the beginning of the kth slot and, without loss of
generality, it assumes: 1) all RT users in the system have re-
ceived a packet at the beginning of the kth slot, 2) all users
in the system have an “on” channel. If, at some slot, any of
these assumptions does not hold for some users, these users are

Algorithm 1: Scheduling and Power Allocation Algorithm.

1: Define the auxiliary functions ΨX(·) : SRT → R+ and
PX(·, ·) : SRT ×NR → R+ .

2: Initialize PX(S, i) = 0 for all S ∈ SRT and all i ∈ NR .
3: Sort the RT users in a descending order of Yi(k).

Without loss of generality, assume that
Y1 > Y2 · · · > YNR .

4: Find the user i∗NR with longest queue Qi(k) and set
SR (k) to be an empty set.

5: while i ≤ NR do
6: SR (k) = SR (k) ∪ {i} and set the power according

to (26) ∀i ∈ SR (k).
7: Calculate μi (k) and μi∗N R

(k) according to (4) and
(24), respectively.

8: if μi∗N R
(k) < 0 then

9: Set μi (k) = 0 for all i ∈ NNR and set the power
allocation for all i ∈ SR (k) according to (27) and
recalculate μi (k) according to (4).

10: end if
11: Set ΨX(SR (k)) =

∑
i∈SR (k)

(Yi(k)−Xi(k)μi (k)) + Ψ∗NR(i∗NR , k)μi∗N R
(k).

12: Set PX(SR (k) , i) = Pi (k), ∀i ∈ SR (k).
13: i← i + 1.
14: end while
15: Set the optimum scheduling set
S∗R (k) = arg maxSR (k) ΨX(SR (k)).

16: Set P ∗i (k) = PX (S∗R (k) , i) for all i ∈ NR , and set
the NRT scheduler according to (24).

17: For each i ∈ NNR , set ri(k) = ai(k) if Qi(k) < Bmax
and 0 otherwise.

18: Update equations (2), (13) and (14) at the end of the
kth slot.

eliminated from the system for this slot. That is, they will not
be scheduled. In addition, we assume heavy traffic regime, thus
each NRT user has enough data to fill the entire time slot. We
define the set SRT to be the set of all candidate sets.

D. Optimality of Proposed Algorithm

We first define R
(opt)
i to be the throughput of NRT user i under

the optimal algorithm that solves (5). We define this algorithm
to be the one that sets, at each time slot k, the variables Pi (k),
μi (k), 11i(k) and Ri(k) to the values P̃i(k), μ̃i(k), 1̃1i(k) and
R̃i(k), respectively, where the latter values satisfy

lim sup
K→∞

1
K

K−1∑

k=0

E
[
1̃1i(k)

] ≥ λiqi , ∀i ∈ NR , (33)

lim sup
K→∞

1
K

K−1∑

k=0

∑

i∈N
E

[
μ̃i(k)P̃i(k)

T

]
≤ Pavg , (34)

lim sup
K→∞

1
K

K−1∑

k=0

E

[
μ̃i(k)R̃i(k)

L

]
= R

(opt)
i , ∀i ∈ NNR ,

(35)
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where R
(opt)
i is the optimal rate for user i ∈ NNR with respect

to solving (5). The following theorem gives a bound on the
performance of Algorithm 1 compared to the optimal algorithm
that has a genie-aided knowledge of R

(opt)
i which, we show

that, due to this knowledge it can solve the problem optimally.
Theorem 3: For the on-off channel model, if problem (5) is

feasible and the NRT users’ arrival rate vector is in the heavy
traffic regime, then for any Bmax > 0 Algorithm 1 results in
satisfying all constraints in (5) and achieves an average rate
satisfying

∑

i∈NN R

Ri ≥
∑

i∈NN R

R
(opt)
i − C1

LBmax
. (36)

Proof: See Appendix IX �
Theorem 3 says that Algorithm 1 yields an objective function

(5) that is arbitrary close to the performance of the optimal
algorithm that solves (5). The complexity of Algorithm 1 is of
O (NR), i.e., linear in the number of RT users allowing for its
scalability to large number of users.

V. EXTENSIONS TO CONTINUOUS FADING CHANNELS

In the case of continuous fading, i.e. γi(k) ∈ [0, γmax] where
γmax <∞ is the maximum channel gain that γi(k) can take, we
expect the power allocation to depend on the channel gain. An
algorithm that solves this case is a generalization of Algorithm 1
that assumes γi(k) ∈ {0, 1}. However, as will be demonstrated
later, the scheduling algorithm of the RT users has a higher
complexity order than the special case of on-off channel gains.

We adopt the same model as in Section II except that we
allow γi(k) to take any value in the interval [0, γmax], for all
i ∈ N . The transmission rate for this case is still given by (3),
and the optimization problem is the same as (5) with the new
assumption for γi(k).

A. Derivation of the Algorithm

Algorithm 2 is based on the same Lyapunov optimization
procedure as explained in Section IV. Following this procedure,
we reach optimization problem (25) with the new definition of
γi(k). We now present the solution for the NRT users followed
by that of the RT users.

Lemma 3: If user i ∈ NNR is scheduled to transmit any of
its NRT data during the kth slot, then the optimum power level
for this NRT w.r.t. problem (25) in the continuous fading case
is given by

Pi (k) = min

((
Qi(k)
X(k)

− 1
γi(k)

)+

, Pmax

)
. (37)

Moreover, in the heavy traffic regime, the scheduled NRT user,
if any, that optimally solves problem (5) is given by

i∗NR = arg max
i∈NN R

Ψ∗NR(i, k), (38)

with ties broken randomly uniformly, while Ψ∗NR(i, k) comes
by substituting (37) in (21).

Proof: The proof is similar to that of Lemma 2 and is omitted
for brevity. �

Lemma 3 presents the optimal power and scheduling policy
for the NRT users. To solve for the RT users, we assume a fixed
subset SR (k) ⊆ NR of RT users to be scheduled during the kth
slot and find the power allocation of these users. Consequently,
the optimum set S∗R (k) is the one that maximizes (25). In
Section V-B, we present an algorithm that finds this optimum
set as well as discussing the complexity of this algorithm.

Assuming that the users in the set SR (k) are scheduled at the
kth slot, the problem is to find the transmission power levels for
all the users in this set. We answer this question in the following
theorem.

Theorem 4: In the continuous-fading channel model, given
some non-empty set SR (k), the power allocation policy

Pi (k) = min
(
P̃i(k), Pmax

)
(39)

where

P̃i(k) =
1

γi(k)

⎡

⎣ φ̃γi(k)− 1

W0

([
φ̃γi(k)− 1

]
e−1
) − 1

⎤

⎦ (40)

i ∈ SR (k), with φ̃ � (Ψ∗NR(i∗NR , k) + φ)T/X(k) and
Ψ∗NR(i, k) defined in Lemma 3, is optimal w.r.t. (25) when φ is
set to a non-negative value that satisfies (11) and φμi∗NR

(k) = 0.
Proof Sketch: The proof is similar to that of Theorem 1.

The only difference is that we have to obtain the optimum
value of φ satisfying (11). We note that instead of finding
φ > 0 using a 1-dimensional grid search, we can use the
bisection method [20, Ch. 9] which requires the monotonicity
of the left-hand-side of (11), a fact that can be shown easily
by showing that the derivative, of this left-hand-side, with
respect to φ is always negative. Moreover, since the bisection
algorithm needs a bracketing interval, it can be easily shown
that the optimum φ satisfies φ ≤ φmax � −Ψ∗NR(i∗NR , k) +
exp (L | SR (k) |/T )L|SR (k ) |X(k)Pmax/ (exp(L|SR (k )|
/T )− 1).

It is clear that the Lambert power policy in (39) has a different
structure than the water-filling policy in (37). The reason is
because the former is for the RT users while the later is for the
NRT users. We plot the two policies in Fig. 2 with L = 1, T = 1,
Pmax = 20 while Qi(k)/X(k) = 15. The Lambert policy is
plotted assuming a single RT user is scheduled at slot k while
the water-filling policy is plotted assuming a single NRT user is
scheduled at slot k. We note that when a RT user i is the only
scheduled user, (39) is equivalent to

Pi (k) = min
(

eL/T − 1
γi(k)

, Pmax

)
, (41)

We contrast the fact that, while the water-filling is an increasing
function in the channel gain, the Lambert is a decreasing func-
tion in the channel gain. This is because the RT user has a single
packet of a fixed length to be transmitted. If the channel gain
increases, then the power decreases to keep the same transmis-
sion rate resulting in the same transmission duration of one slot.
This result holds when multiple RT users are scheduled as well
as demonstrated in the following theorem.
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Fig. 2. The Lambert power policy decreases with the channel gain, while the
water-filling policy increases with the gain.

Theorem 5: Let SR (k) be some scheduling RT set at slot k.
The power Pi (k) given by (39) is monotonically decreasing in
γi(k) ∀i ∈ SR (k).

Proof Sketch: Proof follows by differentiating (39) with re-
spect to γi(k) for some user i, while having φ satisfying (11),
and showing that the resulting derivative is always non-positive
for γi(k) ≥ 0.

The optimum scheduling algorithm for the RT users is to find,
among all subsets of the set NR , the set that gives the highest
objective function of (25).

B. Proposed Algorithm and Proof of Optimality

The exhaustive approach to the scheduling problem is to eval-
uate the objective function of (25) for all 2NR possible sets and
choose the set that gives the highest objective function. This
may be not practical when the number of RT users is large.
Observing the approach in the special on-off case and inspired
by Theorem 2 that reduces the search space, we provide here
a similar approach. We first provide the following definition
which is analogous to Theorem 2.

Theorem 6: At slot k, for any set SR (k), if there exists some
i /∈ SR (k) and some j ∈ SR (k) such that Yi(k) > Yj (k) and
γi(k) > γj (k), then SR (k) cannot be an optimal RT set, with
respect to problem (25), for the continuous channel model.

Proof Sketch: The proof is carried out by contradiction. We
can show that if Yi(k) > Yj (k) and γi(k) > γj (k) for some
i /∈ SR (k) and some j ∈ SR (k), then we could form another set
S′(k) by swapping users i and j and thus increase the objective
function of (25).

This theorem provides a sufficient condition for non-
optimality. In other words, we can make use of this theorem
to restrict our search algorithm to the sets that do not satisfy this
property. Before presenting the proposed algorithm, we define
the set SRT as the set of all possible subsets of the set NR .

Theorem 7: For the continuous channel model, if problem
5 is feasible, then for any Bmax > 0 and any ε ∈ (0, 1] there

Algorithm 2: Lambert-Strict Algorithm.

1: Define the auxiliary functions ΨX(·) : SRT → R+ and
PX(·, ·) : SRT ×NR → R+ .

2: Initialize PX(S, i) = 0 for all S ∈ SRT and all i ∈ NR .
3: Find the user i∗NR given in (38) and calculate its power

given by (37).
4: for S ∈ SRT do
5: if ∃ some i /∈ S and some j ∈ S such that

Yi(k) > Yj (k) and γi(k) > γj (k) then
6: Set ΨX(S) = −∞.
7: Skip this iteration and go to step 4 to continue with

the next set in SRT .
8: end if
9: φ← φmax + Δφ
10: while φμi (k) �= 0 do
11: φ← φ−Δφ
12: Calculate Pi (k) given by (39) for all i ∈ S and

set μi∗N R
(k) = T −∑i∈S μi (k).

13: end while
14: Set ΨX(S) =

∑
i∈S (Yi(k)−Xi(k)μi (k))

+Ψ∗NR(i∗NR , k)μi∗N R
(k) and

PX(S, i) = Pi (k) , i ∈ S.
15: Set ΨX(S) =

∑
i∈S (Yi(k)−Xi(k)μi (k))

+Ψ∗NR(i∗NR , k)μi∗N R
(k).

16: Set PX(S, i) = Pi (k), ∀i ∈ S.
17: i← i + 1.
18: end for
19: Set the optimum scheduling set
S∗R (k) = arg maxS ΨX(S).

20: Set P ∗i (k) = PX (S∗R (k) , i) for all i ∈ NR , and set
the NRT scheduler according to (24).

21: For each i ∈ NNR , set ri(k) = ai(k) if Qi(k) < Bmax
and 0 otherwise.

22: Update equations (2), (13) and (14) at the end of the
kth slot.

exists some finite constant C2 such that Algorithm 2 satisfies
all constraints in (5) and achieves an average sum throughput
satisfying

∑

i∈NN R

Ri ≥
∑

i∈NN R

R
∗
i −

C2

LBmax
, (42)

where R
∗
i is the optimal rate for user i w.r.t. (5).

Proof: The proof is similar to that of Theorem 3 and C2 is
defined as C1 but with Rmax � log (1 + Pmaxγmax). We omit
the proof for brevity. �

Due to the problem being a combinatorial problem with a
huge amount of possibilities, we could not reach a closed-form
expression for the complexity order of this algorithm. However,
simulations will show its complexity improvement over the ex-
haustive search algorithm. In particular, simulations show that
the complexity of this algorithm is close-to-linear.
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C. Extensions to Packets With Different Lengths

Let Li(k) be the length of user i’s packet at slot k, i ∈ N . It
can be easily shown that the power-allocation-and-scheduling
for the NRT users and the power allocation for the RT users,
namely Lemma 3 and Theorem 4 do not change. That is, re-
placing L with Li(k) in (27) yields an optimal solution as well.
However, there are two possible extensions for the scheduling
algorithm for the RT users, namely Algorithm 2. We discuss
them next.

1) Homogeneous RT Users: This is where all packets of
all RT users have the same lengths at slot k but they change
(randomly and independently) from a slot to the other. That is,
Li(k) = Lj (k) for all i and j, but Li(k1) and Li(k2) need not
be the same for k1 �= k2. This could be the case if all RT users
are streaming the same information from the same server, or if
their packet lengths change from a slot to the other but are highly
correlated across users in the sense that Li(k) = Lj (k) is a valid
approximation. In this case, Algorithm 2 is still optimal since it
solves problem (25) which is a per-slot optimization problem,
namely, it is not affected with the packet lengths at preceding
and succeeding time slots.

2) Heterogeneous RT Users: This is where the packet length
changes significantly from a user to the other in addition to its
change (randomly and independently) from a slot to the other. In
this case, the scheduling algorithm of the RT users proposed in
Algorithm 2 is suboptimal. In order for the algorithm to be opti-
mal, Steps 5 through 8 of the algorithm need to be removed. That
is, the algorithm goes over all subsets of the set NR . The com-
plexity of the optimal algorithm is exponential in the number of
RT users. However, suboptimal algorithms could still be devel-
oped. One example is to modify Step 3 of Algorithm 1 by sorting
the users according to a decreasing order of Yi(k)γi(k)/Li(k).
Consequently, this yields an algorithm of a linear complexity in
NR . The sorting according to Yi(k)γi(k)/Li(k) stems from the
fact that RT users with higher Yi(k) and γi(k) and lower Li(k)
should be more favored to be scheduled.

VI. CAPACITY REGION

In Section V, Algorithm 2 is shown to maximize the NRT
sum-throughput subject to the system constraints. In this section
we want to study the stability of the system. Specifically, we are
interested to answer the following two questions:

1) What is the capacity region of the system under the con-
tinuous fading model?

2) What scheduling and power-allocation algorithms can
achieve this capacity region?

Studying the system’s capacity region means that we need
to find all arrival rate vectors λNR under which the NRT users’
queues are stable (i.e., have a stationary distribution). This needs
to be studied assuming that all arriving packets are admitted to
their respective buffers. Hence we first eliminate the admission
controller r (k) by replacing the queue (2) with

Qi(k + 1) = (Qi(k) + Lai(k)− μi (k) Ri(k))+ . (43)

More formally, the first question now becomes: what is the
closure of all admissible arrival rate vectors? An admissible
arrival rate vector is defined next.

Definition 4: An arrival rate vector λNR � [λi ]i∈NN R is said
to be admissible if there exists a power-allocation and scheduling
algorithm under which constraints (7) and (8) are satisfied given
the power and scheduling constraints (9)–(12).

For simplicity we henceforth assume that the channel gain
γi(k) ∈M where M is a discrete finite set, the elements of
which are in the range [0, γmax]. With a slight abuse in notation,
we define γi(m) � γi(k) to be the gain of user i when the chan-
nel is in fading state m � [γ1(m), . . . , γN (m)]T ∈MN dur-
ing slot k. We also define μi (m, k) and Pi (m, k) to be, respec-
tively, the duration and power allocated to user i ∈ N when the
channel is in fading state m � [γ1(m), . . . , γN (m)]T ∈MN

during slot k, and πm to be the probability of occurrence of
fading state m. We now mention the following definition then
state Theorem 8 that answers the first question.

Definition 5: An arrival rate vector λNR is said to belong to
the “Lambert Region” RLamb if and only if there exists a se-
quence of time duration vectors {µ (k)} and a power allocation
policy {P (k)} that make λNR satisfy

λi =
1
L

∑

m∈MN

μi (m, k) log (1 + Pi (m, k) γi(m)) πm,

(44)
i ∈ NNR , while having {µ (k)} and {P (k)} satisfy

qiλi ≤
∑

m∈MN

μi (m, k) log (1 + Pi (m, k) γi(m)) , i ∈ NR ,

(45)
∑

i∈N
μi (m, k) ≤ T, ∀k ≥ 1,m ∈MN , (46)

lim sup
K→∞

1
K

K∑

k=1

∑

i∈N

∑

m∈M
μi (m, k) Pi (m, k) ≤ Pavg , (47)

μi (m, k) ≥ 0, i ∈ N ,∀k ≥ 1,m ∈MN , (48)

Pi (m, k) ≥ 0, i ∈ N ,∀k ≥ 1,m ∈MN . (49)

Theorem 8: If λNR(1 + ε) ∈ RLamb then Algorithm 2 sat-
isfies (7)–(12). Otherwise, then problem (5) is infeasible.

Proof: See Appendix X �
Theorem 8 says that RLamb is in fact the system’s capacity

region. This answers the first question. Moreover, the second
question is answered in the proof, as shown in Appendix X. In
the proof, we show that with a simple modification to Algo-
rithm 2 we can achieve this capacity region. The modification
is by setting ri(k) = ai(k) for all i ∈ NNR .

VII. SIMULATION RESULTS

We simulate the system for the on-off channel model as well
as the continuous channel model. For both models, we assume
that all channels are statistically homogeneous, i.e., γi = γ for
all i ∈ N where γ is a fixed constant. Moreover, all RT users
have homogeneous delivery ratio requirements, thus qi = q for
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TABLE I
SIMULATION PARAMETER VALUES

Parameter Value Parameter Value

L loge (2) bits/packet Pm ax 20
Bm ax 104 {γi}i∈N 0.9
{λi}i∈NR

0.03 packets/slot T 1
{λi}i∈NN R

1 packets/slot {qi}i∈NR
0.9

NR = NNR 10 users Pavg 15

Fig. 3. Sum of average throughput for all NRT users. The FixedP algorithm
assigns a fixed power (Pavg or Pm ax ) to all users, while the ChanInv adjusts the
power based on (50). The Optimal Solution solves problem (25) exhaustively
for all 2N R possible subsets.

all i ∈ NR for some parameter q. All parameter values used
in the simulations are summarized in Table I for all simulation
figures unless otherwise specified.

We compare the throughput of the NRT users, which is the
objective of problem (5), to those of two other power allocation
and scheduling algorithms that we call “FixedP” and “ChanInv”
algorithms. Both algorithms share the same scheduling policy,
however, the power allocation is different. The scheduling policy
for both is to allocate the channel at slot k to the RT users whose
average percentage of packets served, up to slot k, is less than
qi . The power allocation, on the other hand, is to transmit with
a fixed power, i.e., Pi (k) = Pavg (or Pi (k) = Pmax ) for all
i ∈ N and all k ≥ 1, for the FixedP algorithm, and to adapt
the power according to the number of users Nk served in the
ChanInv algorithm using the formula

Pi (k) = min
(
eL |Nk |/T − 1, Pmax

)
. (50)

A. On-Off Channel Model

We assume that we have N = 20 users that is split equally
between the RT and NRT users, i.e., NR = NNR = 10. Fig. 3
shows a substantial increase in the average rate of the proposed
algorithm over the FixedP algorithm (for Pi (k) = Pmax ) with

Fig. 4. As q increases, the RT users are assigned the channel more frequently.
This comes at the expense of the NRT’s throughput. However, the proposed algo-
rithm outperforms the FixedP algorithm. The Optimal Solution solves problem
(25) exhaustively for all 2N R possible subsets.

around 200% at low Pavg values and 19% at high Pavg values.
And although the improvement over the FixedP is smaller when
Pi (k) = Pavg , the gap increases with Pavg . We note that this
improvement is expected to be substantial in light and moderate
traffic regimes, since the BS is not transmitting at each time slot,
but this is out of the scope of this study.

In Fig. 4, the sum of average NRT users’ throughput is plotted
while keeping Pavg = 15 but changing q. We can see that the
FixedP algorithm results in a large degradation in the through-
put compared to Algorithm 1 which allocates the power and
schedules the users optimally with respect to (5). The decrease
in the throughput observed in both curves of Fig. 4 is due to the
increase in the parameter q. This increase makes constraint (8)
more stringent and thus decreases the feasible region decreasing
the throughput. The reason why the ChanInv has a lower rate
for the NRT users is because it gives priority to the RT users that
have their QoS constraint violated over any other NRT user. For
example, if slot k has 3 RT users and 1 NRT user having packets
waiting for transmission, the FixedP schedules all 4 users. On
the other hand, the ChanInv schedules the 3 RT users only and
takes advantage of transmitting with lower power levels since
the rate does not need to be as high. Although there is some
saving in the BS’s power in the ChanInv scheme, this power
saving increases the rate, in future time slots, logarithmically
(see (3)).

In Fig. 5 we show the effect of increasing the number of
users on the system’s throughput. As the number of users in-
crease, more RT users have to be scheduled. This comes at the
expense of the time allocated to the NRT users thus decreasing
the throughput for the two plotted algorithms.

We also plot the “Optimal Solution” which solves problem
(25) exhaustively. It evaluates the objective of (25) for all 2NR

possible subsets and schedules the subset that gives the largest
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Fig. 5. As N increases, the RT users are allocated the channel more at the
expense of the NRT users’ throughput. The Optimal Solution solves problem
(25) exhaustively for all 2N R possible subsets.

Fig. 6. As the number of NRT users in the system increase the complexity
increases exponentially for exhaustive search and nearly linear for the Lambert-
Strict algorithm.

objective function. As expected, its performance coincides with
that of the proposed algorithm.

B. Continuous Channel Fading Model

In this simulation setup, we assume the channels are fad-
ing according to a Rayleigh fading model with avg power gain
of γ = 1. In Fig. 6, we plot the complexity of the Lambert-
Strict algorithm as well as the exhaustive search algorithm (Op-
timal Solution) with exponential complexity versus the num-
ber of users NR . The complexity is measured in terms of
the average number of iterations, per-slot, where we have to
evaluate the objective function of (25). Since this complexity
changes from a slot to the other, we plot the average of this

Fig. 7. The Lambert-Strict Algorithm yields the same throughput as the ex-
haustive search algorithm but with a lower average complexity.

complexity. As the number of users increases, the Lambert-Strict
algorithm has an average complexity close to linear. However,
there is no sacrifice in the throughput of the NRT users. This is
shown in Fig. 7. The reason stems from the optimality of the
Lambert-Strict algorithm that does not eliminate any RT users
from scheduling unless it is a suboptimal user. We note that we
simulated this system with Bmax = 100, T = 5, Pavg = 10 and
q = 0.9.

VIII. CONCLUSION

We discussed the problem of throughput maximization in
downlink cellular systems in the presence of RT and NRT users.
We formulated the problem as a joint power-allocation-and-
scheduling problem. Using the Lyapunov optimization theory,
we presented two algorithms to optimally solve the through-
put maximization problem. The first algorithm is for the on-off
channel fading model while the second is for the continuous
channel fading model. The power allocations for both algo-
rithms are in closed-form expressions for the RT as well as the
NRT users. We showed that the NRT power allocation is water-
filling-like which is monotonically increasing in the channel
gain. On the other hand, the RT power allocation has a totally
different structure that we call the “Lambert” power policy. It
is found that the latter is a decreasing function in the channel
gain.

The two algorithms differ in the complexity of the adopted
scheduling policies. The first algorithm has a linear complexity
while the second is shown, through simulations, to have a close-
to-linear complexity. We presented the capacity region of the
problem and showed that the proposed algorithms achieve this
region.
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APPENDIX A
PROOF OF THEOREM 3

Proof: We divide the proof into two parts. First, we show
that the virtual queues are mean rate stable. This proves that
constraints (8) and (9) are satisfied. Second, through the Lya-
punov optimization technique we show that the drift-minus-
reward term is within a constant gap from the performance of
the optimal, genie-aided algorithm [21], [22].

1) Mean Rate Stability: According to (22), Algorithm 1
minimizes Ψ(k) where the minimization is taken over all pos-
sible scheduling and power allocation algorithms including the
optimal algorithm that solves (5). We define Ψ∗(k) � min Ψ(k).
Thus we can write Ψ∗(k) ≤ Ψ̃(k) where Ψ̃(k) is the value of
Ψ(k) evaluated at the optimal algorithm and is given by

Ψ̃(k) �
∑

i∈NR

EU(k)
[
Yi(k)

(
λiqi − 1̃1i(k)

)]

+ X(k)

⎛

⎝
∑

i∈N

EU(k)

[
μ̃i(k)P̃i(k)

]

T
− Pavg

⎞

⎠

+
∑

i∈NN R

Qi(k)
(

EU(k)

[
LR

(opt)
i − μ̃i(k)R̃i(k)

])
, (51)

where P̃i(k), μ̃i(k), 1̃1i(k) and R̃i(k) satisfy (33), (34) and (35).
Taking E [·] to (51), summing over k = 0 · · ·K − 1, dividing by
K, taking the limit as K →∞ and using (33), (34) and (35)
gives

lim sup
K→∞

1
K

K−1∑

k=0

E
[
Ψ̃(k)

]
≤ 0 (52)

Evaluating by Algorithm 1 in the right-side of (16), and taking
E [·] with respect to U(k) to both sides gives

1
2

∑

i∈NR

E
[
Y 2

i (k)
]
+

1
2

∑

i∈NN R

E
[
Q2

i (k)
]

+
1
2

E
[
X2(k)

] ≤ C1 + E [Ψ∗(k)] . (53)

Removing the two summations on the left-side of (53), summing
over k = 0 · · ·K − 1, dividing by K then taking the limit as
K →∞ yields

lim sup
K→∞

E
[
X2(K)

]

2K
≤ C1 + lim

K→∞
1

2K

K−1∑

k=0

E [Ψ∗(k)]

(a)
≤ C1 + lim

K→∞
1

2K

K−1∑

k=0

E
[
Ψ̃(k)

] (b)
≤ C1. (54)

where inequalities (a) and (b) in (54) follow from the inequal-
ity Ψ∗(k) ≤ Ψ̃(k) and (52), respectively. Jensen’s inequality
says that E [X(K)] ≤ E

[
X2(K)

]
. Dividing by K2, taking the

square root, passing K →∞ and using (54) completes the mean
rate stability proof. Similarly we can show the mean rate stability
of Yi(k).

2) Objective Function Optimality: Evaluating the right-
hand-side of (19) at the optimal policy that has a genie-

aided knowledge of the optimum reward ri(k) = R
(opt)
i

we get Δ(k)−Bmax
∑

i∈NN R
EU(k) [Lri(k)] ≤ C1 + Ψ̃(k)−

Bmax
∑

i∈NN R
R

(opt)
i which is similar to [17, eq. (20)]. The

optimality proof continues along the lines of [17, Th. 2]. �

APPENDIX B
PROOF OF THEOREM 8

Proof: We divide our proof into two parts. In the first part
(Achievability), we show that if λNR is strictly within the re-
gion RLamb , then the queues can be stabilized. And the al-
gorithm that stabilizes these queues is a modified version of
Algorithm 2. We show this using the Lyapunov optimization
technique [23, p. 120]. In the second part (Converse), we show
that if λNR /∈ RLamb , then there exists no algorithm that guar-
antees the stability of the NRT queues.

1) Achievability: We will show here that the following
inequality holds under Algorithm 2 which is the key to the
proof.

∑

i∈NN R

λiQi(k) +
∑

i∈NR

λiqiYi(k)−
∑

i∈N
X(k)Pavg ≤

EU(k)

[
∑

i∈NN R

Qi(k)Di(k) +
∑

i∈NR

Yi(k)Di(k)

]

− EU(k)

[
∑

i∈N

X(k)μi (k) Pi (k)
T

]
, (55)

where Bi(k) � μi (k) log (1 + Pi (k) γi(k)). Once this in-
equality is proven, the rest of the achievability proof works
similar to [23, Th. 5.3.2, p. 120]. Since λNR(1 + ε) ∈ RLamb ,
to prove (55) we multiply (44) by λi , (45) by λi , and (47) by
(−Pavg), then add the three inequalities after summing the first
over i ∈ NNR and the second over i ∈ NR yielding

∑

i∈NN R

λiQi(k) +
∑

i∈NR

λiqiYi(k)−
∑

i∈N
X(k)Pavg

≤
∑

m∈MN

(
∑

i∈NN R

Qi(k)Di(m, k) +
∑

i∈NR

Yi(k)Di(m, k)

(56)

−
∑

i∈N

X(k)μi (m, k) Pi (m, k)
T

)
πm (57)

≤
∑

m∈MN

[
∑

i∈NN R

Ψ∗NR(i, k) +
∑

i∈NR

Ψ∗R(i, k)

]
πm, (58)

where Di(m, k) � μi (k) log (1 + Pi (k) γi(k)) while inequal-
ity (57) follows since the objective of problem (22) is an upper
bound on (57). But since the right-hand-side of (55) can be



EWAISHA AND TEPEDELENLIOĞLU: OPTIMAL POWER CONTROL AND SCHEDULING FOR REAL-TIME AND NON-REAL-TIME DATA 2739

manipulated to give

EU(k)

[
∑

i∈NN R

Qi(k)Di(m, k) +
∑

i∈NR

Yi(k)Di(m, k) (59)

−
∑

i∈N

X(k)μi (k) Pi (k)
T

]
(60)

= EU(k)

[
∑

i∈NN R

(
Qi(k)Di(m, k)− X(k)μi (k) Pi (k)

T

)

(61)

+
∑

i∈NR

(
Yi(k)Di(m, k)− X(k)μi (k) Pi (k)

T

)]
(62)

=
∑

m∈MN

[
∑

i∈NN R

Ψ∗NR(i, k) +
∑

i∈NR

Ψ∗R(i, k)

]
πm ≥ (63)

∑

i∈NN R

λiQi(k) +
∑

i∈NR

λiqiYi(k)−
∑

i∈N
X(k)Pavg (64)

where the left side of the inequality in (64) follows by evaluating
(62) at Algorithm 2 while its right side follows from (58) which
completes the proof of (55).

2) Converse: The converse is done by showing that the
upper bound of the sum of the number bits served from all NRT
buffers under the best, possibly genie-aided, policy is less than
the sum of bits arriving to the NRT buffers if the arrival rate
does not satisfy (45) through (49).

From the strict separation theorem [23, p. 10], if λ /∈ RLamb
then there exists a vector β � [β1, · · ·βNN R ]T ∈ RNN R and a
constant δ > 0 such that for any vector x ∈ RLamb the following
holds

∑

i∈NN R

βiλi ≥
∑

i∈NN R

βixi + δ (65)

Define H(k + 1) = H(k) +
∑

i∈NN R
βi (Lai(k)−Bi(k)) as

the weighted sum of the queues where Bi(k) � μi (k) Ri(k)
is the number of bits transmitted to user i at slot k. Hence we
have

H(K) =
K−1∑

k=0

∑

i∈NN R

βi (Lai(k)−Bi(k)) . (66)

Define the set KK (l) � {k : m(k) = l, 0 ≤ k < K} we can
bound the second term in (66) as follows

∑

i∈NN R

βi lim sup
K→∞

K−1∑

k=0

Bi(k)
K

≤
∑

i∈NN R

βi lim sup
K→∞

M∑

l=1

∑

k∈KK (l)

B̃i(k)
|KK (l)|

|KK (l)|
K

(67)

=
∑

i∈NN R

βi

M∑

l=1

B̃
(l)
i πl =

∑

i∈NN R

βi

M∑

l=1

Lxiπl . (68)

Adding Lδ to both sides of (68) and using (65) yields

∑

i∈NN R

βi lim sup
K→∞

K−1∑

k=0

Bi(k)
K

+ Lδ ≤

L

(
M∑

l=1

πl

∑

i∈NN R

βixi + δ

)
≤
∑

i∈NN R

βiLλi

= lim
K→∞

K−1∑

k=0

Lai(k)
K

. (69)

Combining (69) and (66) we conclude that lim supK→∞
H(K) =∞which means that the weighted sum of the queues is
unbounded, under the best possible policy, when λNR /∈ RLamb
which completes the proof. �
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