Resource Bounded Secure Goal Obfuscation

Anagha Kulkarni, Matthew Klenk, Shantanu Rane∗ and Hamed Soroush∗
Palo Alto Research Center
Palo Alto, CA, USA
{firstname.lastname}@parc.com

Abstract
An AI system that is operating in an adversarial environment should be able to provide safeguards for its internal information. In other words, an adversary should not be able to perform diagnosis on the AI system’s internal information based on the resulting observations during plan execution. The system should be able to produce a plan that achieves the desired objective while minimizing leakage about its internal information. In this paper, we present an approach that allows an AI agent to securely obfuscate its true goal (i.e., agent’s internal information) for as long as possible using a subset of candidate goals. By making all the candidate goals equally likely for as long as possible, the agent’s true goal is kept secured. The AI agent may have to incur an additional cost to reach its true goal, but this cost buys the obfuscation guarantee. Given a larger resource budget, greater obfuscation is possible. We provide empirical evaluations of our approach using IPC domains collecting key metrics to show its feasibility.

1 Introduction
In an adversarial environment, an implicit requirement for an AI agent is to minimize information leakage while achieving its objectives. If the agent’s activities are not secure, an adversarial observer can use diagnosis to infer internal information and interfere with the agent’s objectives. Consider the following domains: in military planning, adversaries observe troop movements to infer possible targets; in corporate strategy, competitors predict each others future directions by observing potential partnerships; in product design, component specifications often portend new product’s functionality. In such settings, the agent should generate behaviors that can obfuscate its actual objective for as long as possible. The execution of obfuscated behaviors may be more expensive. This leads to the agent trading-off its available resources in order to ensure privacy of the sensitive information.

Our problem setting considers two agents, an actor and an observer. The actor can perform actions in the environment. The observations, known to the actor and the observer, are the result of the actor’s activities. The observations can be partially or fully observable. Partially observable observations reveal some information about the actor’s actions and state but do not reveal it exactly, whereas the fully observable ones convey the exact action taken by the actor and the corresponding state transition. While the observer knows a set of goals the actor could be pursing, the true goal is not known to the observer. Therefore the objective is to securely obfuscate the true goal while the actor is trying to achieve it. In this work, we present approaches that the actor can utilize to obfuscate its true goal for as long as the observation model allows and in a cost-effective manner.

There have been recent works (Kulkarni, Srivastava, and Kambhampati 2018; Masters and Sardina 2017; Keren, Gal, and Karpas 2016b) which explore the problem of privacy preservation and deception. We explore the goal obfuscation problem introduced in Kulkarni, Srivastava, and Kambhampati (2018). Our main contribution is twofold: introduction of a stronger definition of privacy with respect to the...
observation sequence generated, and an approach to trade-off additional cost incurred with the amount of obfuscation achieved. The problem of goal obfuscation (Kulkarni, Srivastava, and Kambhampati 2018) involves hiding the true goal of the agent from the observer by making the observation sequence “consistent” with v candidate goals. Essentially, consistent with v candidate goals means that, there exists a plan with the same observation sequence to achieve each of the v goals. However, we introduce a stronger definition of consistency, such that, when the solution computation mechanism is run with either of the v goals as a “true goal”, we get the same observation sequence. Thus, our solution observation sequence makes all the v goals equally likely for as long as possible. This preservers the privacy of the true goal even when the observer has access to the computation mechanism. Also, our approach can compute the cheapest solution that satisfies the stronger privacy property. In the following paragraph, we present an example that achieves obfuscation with respect to v goals and satisfies the stronger privacy property.

Consider the gridworld in Figure 1. Assume each cell allows movement in all 8 adjacent cells with equal cost. The initial state is at cell (0, 0). The candidate goals are given by Goal1, Goal2, Goal3 and Goal4, and Goal2 is the actor’s true goal. With v = 3, we select Goal1, Goal2 and Goal3 because they have higher landmark similarity than any other combination of 3 goals (inclusive of true goal). The observation model emits two types of observation symbols for each combination of 3 goals (inclusive of true goal). The observation model emiss all the v goals equally likely for as long as possible. This preserves the privacy of the true goal even when the observer has access to the computation mechanism. Also, our approach can compute the cheapest solution that satisfies the stronger privacy property. In the following paragraph, we present an example that achieves obfuscation with respect to v goals and satisfies the stronger privacy property.

In such cases, our aim is to obfuscate the true goal for as long as possible by computing a plan that achieves an equidistant state, such that the cost from the equidistant state to each of the goals is minimized. We also discuss a method for choosing v goals among a set of n candidate goals, such that, we can minimize the solution cost and maximize the overall obfuscation. In the following sections, we discuss our approach in detail. We also establish upper and lower bounds on the cost of solutions which satisfy our definition of obfuscation. We present evaluation of our approaches using three International Planning Competition (IPC) domains, namely, Blocksworld, Logistics and Zenotravel.

2 Background and Preliminaries

2.1 Classical Planning

A classical planning problem can be defined as a tuple \(\mathcal{P} = (\mathcal{D}, \mathcal{I}, \mathcal{G}) \), where \(\mathcal{D} = (\mathcal{F}, \mathcal{A}) \) is the actor’s domain with \(\mathcal{F} \) representing a finite set of fluents that define the state of the world \(s \in \mathcal{F}, \mathcal{A} \) is a finite set of actions available to the actor, and \(\mathcal{I}, \mathcal{G} \subseteq \mathcal{F} \) representing the initial state and goal subformuiae. Each action \(a \in \mathcal{A} \) is a tuple of the form \(\langle c(a), \text{pre}(a), \text{eff}^+(a), \text{eff}^-(a) \rangle \) where \(c(a) \) denotes the cost of an action, \(\text{pre}(a) \subseteq \mathcal{F} \) is a set of preconditions for the action \(a \), \(\text{eff}^+(a) \subseteq \mathcal{F} \) is a set of positive effects and \(\text{eff}^-(a) \subseteq \mathcal{F} \) is a set of negative effects, i.e., \(\Gamma(s, a) \models \perp \) if \(s \not\models \text{pre}(a) \); else \(\Gamma(s, a) = s \cup \text{eff}^+(a) \setminus \text{eff}^-(a) \) where \(\Gamma(\cdot) \) is the transition function. The cumulative transition function is given by \(\Gamma(s, \langle a_1, a_2, \ldots, a_n \rangle) = \Gamma(\Gamma(s, a_1), \langle a_2, \ldots, a_n \rangle) \). The solution to \(\mathcal{P} \) is a plan or a sequence of actions \(\pi = \langle a_1, a_2, \ldots, a_n \rangle \), such that, \(\Gamma(\mathcal{I}, \pi) = \mathcal{G} \), i.e., starting from the initial state to the goal. The cost of the plan is, \(\text{cost}(\pi) = \sum_{a_i \in \pi} c(a_i) \).

Note that, we assume all the actions in the planning problem are of uniform cost equal to 1. In other words, the length of the plan is equal to the cost of the plan and an optimal plan is a shortest length plan for the given planning problem.

2.2 Goal Obfuscation Planning Problem

The goal obfuscation planning problem, as defined in (Kulkarni, Srivastava, and Kambhampati 2018), involves two agents: an actor planning in the environment and an observer. The observer has access to the domain model of the actor, which includes the set of fluents, actions and the initial state of the actor. The observer also has access to the set of candidate goals but is unaware of the true goal of the actor. Whenever the actor performs an action in the environment, an observation is emitted. The observation model available to the observer is deterministic and is accessible to both the agents.

Definition 1. A goal obfuscation planning problem is a tuple, \(\mathcal{P}_{GD} = (\mathcal{D}, \mathcal{I}, \mathcal{G}, \mathcal{G}, \Omega, \mathcal{O}) \), where,

- \(\mathcal{G} = \{G_A \cup G_1 \cup G_2 \cup \ldots \cup G_{n-1}\} \) is a set of n candidate goal conditions, and \(G_A \) is the true goal of the actor.
- \(\Omega = \{a_i | i = 1, \ldots, m\} \) is a finite set of observation symbols corresponding to the domain.
- \(\mathcal{O} : (\mathcal{A} \times \mathcal{S}) \rightarrow \Omega \) is the observation function which allows either partial or full observability mapping the pair: action taken and state reached to observation symbols.

When the observation model allows partial observability, multiple \(\langle a, s' \rangle \) pairs correspond to the same observation. When it allows full observability, each observation corresponds to a unique \(\langle a, s' \rangle \) pair. A plan solution to a goal-obfuscation planning problem achieves the true goal while obfuscating it from an adversarial observer for as long as possible.
2.3 Secure Goal-Obfuscation

An important point to note is that the observer only receives the observation sequence associated with the plan executed by the actor. While the observer has access to the agent’s goal set G in P_{GO}, he/she is unaware of the agent’s true goal. A secure goal-obfuscated plan is a solution to P_{GO}, that minimizes the bias of the observation sequence towards the true goal. With respect to a chosen set of v goals, such that, $G_v \subseteq G \land G_A \in G_v$, if we can make the observation sequence associated with the actor’s plan identical for all the v goals, then we can say that the true goal is securely obfuscated. The value of v can be $v \leq n$. We will now distill three important properties of a secure goal-obfuscated plan: (1) For each goal in G_v, there should exist a plan which achieves the goal in l number of steps, (2) The observation sequence associated with v plans that each achieve a goal in G_v should be the same, (3) The observation sequence should not be biased by any goal in G_v. The first and second properties are straight-forward. The third property states that the adversary should be able to compute the same observation sequence while generating a plan solution to any of the v goals. If the above mentioned properties are followed, the observation sequence associated with the plan does not disclose any specific information about the true goal.

2.4 Cryptography Assumptions

We now list a few standard assumptions in cryptography and secure multi-party computation literature presented in several prior works (Lindell 2005; Štolba 2017). The properties listed in the Subsection 2.3 can be interpreted through these assumptions. The following assumptions specify the properties on the behavior of the agents and the algorithm.

Assumption 1. Adversary knows the actor’s algorithm.

This means that the adversarial observer has access to the algorithm and knows how the algorithm works. For example, the adversary knows what states are generated by the algorithm.

Assumption 2. Independence of inputs. This means that the adversary can run the algorithm with different inputs. For example, the adversary can set different goals as true goal to check the variability of the output.

Assumption 3. Delivery of observations is fair and in-order. This means that when the actor takes an action and reaches a corresponding state, only then the adversary receives the corresponding observation. And the delivery of each observation occurs in the order in which it was emitted by the actor’s plan execution.

Assumption 4. Semi-Honest Adversary. This means that the adversary is a passive adversary and follows the algorithm and the protocol correctly but may glean information from the execution to learn about the private information of the actor.

All the four assumptions are commonly found in cryptography literature. The first two assumptions delineate the essential properties of a good obfuscating algorithm. The Assumption 1 states that the agent should not rely on the privacy of the algorithmic mechanism itself. The Assumption 2 states that the adversary may rerun the algorithm with different inputs, therefore the algorithmic mechanism should be immune to reruns. The third and fourth assumptions outline the behavior of adversary. The third assumption states that the adversary can not manipulate the execution of plan and delivery of the observations. We assume that our adversary is a passive adversary that follows the protocol. These assumptions are significantly different from those typically taken in the AI community in that they do not rely on assumptions about the adversary’s goal recognition model.

3 Computation of Secure Goal-Obfuscated Plans

In this section, we will discuss our approach for computing a secure solution to a goal obfuscation planning problem. Given the properties in Subsection 2.3 and assumptions in Subsection 2.4, we can say the following:

**Definition 2. A secure goal obfuscated planner, computes a plan solution $\pi_{P_{GO}}$ and an observation sequence $O_{P_{GO}}$ to a $P_{GO} = (D, I, G_v, \Omega, O)$, where, $\Gamma(I, \pi_{P_{GO}}) \models G_A$, such that, $\forall G' \in G_v$. If G' is set as the true goal of the actor, there exists a plan $\pi_{P_{GO}}$, and an observation sequence $O_{P_{GO}}$, where $\Gamma(I, \pi_{P_{GO}}) \models G' \land O_{P_{GO}} = O_{P_{GO}}$.

Therefore, given a set of v goals, a secure goal-obfuscated planner will generate the same observation sequence when any of the v goals is set as a true goal. For a given problem, if there does not exist a secure goal obfuscated plan (say the observation model doesn’t allow for it), then the planner computes a partial plan starting from initial state that satisfies the privacy assumptions for as long as possible. This partial plan guarantees secure obfuscation for the entirety of its length (although not until the goal). In such cases, we compute partial secure plans which minimize the distance to the true goal in which revealing observations occur. The process of computing secure goal-obfuscated plans consists of two phases: (1) selection of v goals from the set of n candidate goals and (2) computation of a secure goal-obfuscated plan and observation sequence. The first phase selects v candidate goals (inclusive of true goal) that have higher similarity with each other. And then, the second phase computes a plan whose observation sequence is consistent with all of the goals present in the chosen set of v goals.

3.1 Decoy Goal Selection

We choose a set of $v-1$ candidate goals such that these goals have higher similarity with the true goal and with each other. We use a landmark based measure to compute the similarity between the candidate goals. There is a prior work that has made use of disjunctive landmarks for diverse planning (Bryce 2014). In automated planning, for a given problem instance each landmark is a subset of fluent instantiations that every plan must satisfy in order to solve the problem. The intuition behind using landmarks is that, the goals with common landmarks will go through similar states/actions and thereby introduce inherent ambiguity in the plans that achieve the candidate goals. We can choose G_v as follows:
1. For each goal, \(G \in \mathcal{G} \), extract the set of landmarks and add each distinct landmark to a set \(\mathcal{L} \).
2. Initialize each landmark \(L \in \mathcal{L} \) with an empty list.
3. For each distinct landmark \(L \), if it belongs to a goal \(G \), add \(G \) to \(L \)'s list.
4. Order the landmarks in \(\mathcal{L} \) in decreasing order of the number of associated goals.
5. Select all the landmarks in \(\mathcal{L} \) that are associated with at least \(v \) goals. If no such landmarks exist then starting from the first select all landmarks until there are \(v \) unique goals.
6. Order the unique goals in the decreasing order of their frequency in the selected landmarks.
7. If the true goal appears in first half then starting from the first goal (otherwise, starting from the last goal), divide the goals in groups of unique \(v \) goals.
8. Select the group of \(v \) goals that includes the true goal.

Given the set of \(v \) goals, we can obtain a lower bound on the cost of our secure goal-obfuscated plan.

Proposition 1. For given \(\mathcal{G}_v \), let \(\pi_{G_v} \) be the optimal plan to reach the farthest \(G_i \) in \(\mathcal{G}_v \). If \(\pi_v \) is a secure goal obfuscated plan that solves \(\mathcal{P}_{G_v} \) then,

\[
\text{cost}(\pi_v) \geq \text{cost}(\pi_{G_v})
\]

The above proposition states that the cost of a solution to \(\mathcal{P}_{G_0} \) cannot be cheaper than the optimal cost to reach the farthest goal in the set of \(v \) goals. This proposition can be useful in a resource sensitive setting, the decoy goals can be chosen such that the lower bound of the solution cost is smaller than the available cost-bound. Note that in our setting, all the actions have unit cost.

3.2 Secure Goal-Obfuscated Plan

Once we have chosen the set of \(v \) goals, the next step is to compute a secure goal-obfuscated plan. As stated in the properties listed in Subsection 2.3, the observation sequence should not be biased by any particular goal in \(\mathcal{G}_v \). In order to achieve that, we do the following: (1) we first compute a set of states that are equidistant to each of the goals in \(\mathcal{G}_v \), and (2) then we compute a bounded length plan from the equidistant state to a goal, such that the observation sequence is same for plans reaching other goals from the equidistant state. We call it bounded length belief plan, this idea is similar to that of “\(k \)-ambiguous plan” in Kulkarni, Srivastava, and Kambahapati (2018). Formally, an equidistant state and a bounded length belief plan are defined as follows:

Definition 3. An equidistant state, \(e \), is a state in the state space of a \(\mathcal{P}_{G_0} \) from which there are \(d \) number of steps/observations remaining to each of the \(v \) goals.

Each of the \(v \) goals can be achieved in equal number of steps from an equidistant state. When the observation model allows partial observability, the observer operates in the belief space. For every observation emitted, the observer’s belief space is updated to reflect all the possible states consistent with the observation sequence. For example, in Figure 1, the observation \(o_1 \), is consistent with the actor being in any of the 4 diagonally adjacent cells. On the other hand, when the observation model allows full observability, there is no belief space. Note that, as mentioned before, in case of full observability only partial plan, that is plan up to the closest (to the goals) equidistant state is secure. In the case of partial observability, we compute bounded length belief plan.

Definition 4. A bounded length belief plan, \(\pi_{G,A} \), is a plan of length, \(d \), associated with an observation sequence, \(O_v \), where \(\Gamma(e, \pi_{G,A}) \models G_A \), then \(\forall G \in \mathcal{G}_v \exists \pi_{G_0} \) of length \(d \) and associated with observation sequence \(O_v \), where \(\Gamma(e, \pi_{G_0}) \models G \). Here \(d \) is the number of remaining steps from \(e \) to each of the goals.

From an equidistant state, we perform a blind search for bounded length \(d \) in the belief space. After \(d \) steps if all the

Algorithm 1: Computation of Equidistant States

```plaintext
procedure Equidistant_Computation(D, \mathcal{G}_v, \Omega, \mathcal{O})
    open \leftarrow PriorityQueue() \triangleright Open list
    equidistant \leftarrow PriorityQueue() \triangleright Equidistant states
    closed \leftarrow {} \triangleright Closed list
    h_{diff}, h_{max} \leftarrow Heuristic_Computation(\mathcal{G}_v)
    open.push(\mathcal{L}, h_{max})
    while open \neq {} do
        s \leftarrow open.pop()
        for \( a, s' \in \text{successors}(s) \) do
            g(s') \leftarrow g(s) + cost(a)
            h_{diff}, h_{max} \leftarrow Heuristic_Computation(\mathcal{G}_v)
            if s' \notin open and s' \notin closed then
                open.push(s', g(s') + h_{max})
                if h_{diff} = 0 then
                    equidistant.push(I, g(s') + h_{max})
                end
            end
            else if g(s') < g_{prev}(s') then
                if s' \notin open then
                    closed \leftarrow closed \setminus s'
                open.push(s', g(s') + h_{max})
                if h_{diff} = 0 then
                    equidistant.push(I, g(s') + h_{max})
                end
            end
        end
    end
    return equidistant

procedure Heuristic_Computation(\mathcal{G}_v)
    h_{\mathcal{G}_v} \leftarrow {}
    for G \in \mathcal{G}_v do
        compute h_{G}
        h_{\mathcal{G}_v} \leftarrow h_{\mathcal{G}_v} \cup h_{G}
    end
    h_{diff} \leftarrow \max(h_{\mathcal{G}_v}) - \min(h_{\mathcal{G}_v})
    return (h_{diff}, h_{max}(h_{\mathcal{G}_v}))
```
goals are found such that the observation sequence is same then we output the bounded length belief plan and its observation sequence.

A secure goal-obfuscated plan is then generated by computing a cheap plan to an equidistant state, \(e \) and then computing a bounded length belief plan from \(e \) to the goals. The computation of the first part is done by performing a state space search. We search the state space to compute a list of equidistant states. If from a given state, the nearest and the farthest of the \(v \) goals have the same number of remaining steps then we add it to the list of equidistant states. The details of this procedure are given in Algorithm 1. The computation of second part constitutes performing a bounded length blind search in the belief space starting from each equidistant state until the solution is found. We process the list of equidistant states obtained in the first part and start our bounded length belief search from the closest equidistant state to the goals. The details of this procedure are given in Algorithm 2.

Given the set of equidistant states in the entire state space of \(P_G \), we can obtain a upper bound on the cost of our secure goal-obfuscated plan.

Proposition 2. For given \(G_v \), let \(E = \{ e_1, \ldots, e_n \} \) be the set of all the equidistant states for \(P_G \), such that, \(\forall e_i \in E, \pi \in \mathbb{P} \) be the plan from initial state to \(e_i \) and \(\pi^*_v \) be the plan from \(e_i \) to a \(G \in G_v \). If \(\pi_v \) is a secure goal obfuscated plan that solves \(P_G \) then,

\[
\text{cost}(\pi_v) \leq \arg \max_{e \in E} \text{cost}(\pi^*_v) + \text{cost}(\pi^*_v)
\]

The above proposition states that the cost of a solution to \(P_G \) is bounded by the cost of a plan via the costliest equidistant state. This proposition can be useful in a resource sensitive setting, the set of equidistant states can be filtered further before starting belief space search such that the upper bound on the solution cost is smaller than or equal to the available cost-bound.

4 Empirical Evaluation

In this section, we evaluate the scope and usability of our approach. Our empirical evaluation measures the following metrics:

1. The impact of different observation models on the extent of obfuscation.
2. The trade-off between additional cost and extent of obfuscation possible.
3. The comparison between run time and plan costs for goal obfuscation planning versus optimal planning.

In the following subsections, we will discuss the domains used, and the setup of the problems and observation models for each of these. Then we will discuss the observations and results derived for each of the three evaluation objectives.

4.1 Domains and Experimental Setup

We use three IPC domains, namely Blocksworld, Logistics and Zenotravel to evaluate our approach.

Algorithm 2: Computation of Bounded Length Belief Plan and Observation Sequence

```plaintext
procedure belief_plan_computation(equidistant, D, G_v, Omega, O)
    h_min ← ∞
    farthest_equi ← 0
    while equidistant ≠ ∅ do
        s_equi, h_equi ← equidistant.pop()
        if h_equi < h_min then
            farthest_equi ← s_equi
        end
        h_equi ← \{s_equi\}  \triangleright Initial belief
        open ← PriorityQueue()  \triangleright Open list
        closed ← {}  \triangleright Closed list
        open.push((s_equi, h_equi))
        closed ← closed ∪ h_equi
        while open ≠ ∅ do
            s, b ← open.pop()
            if g(s) > g(s_equi) + h_equi then
                break
            end
            if b |= GOAL-TEST(G_v) then
                return obs-sequence for s
            end
            for a, s′ ∈ successors(s) do
                a ← O(a, s′)
                b′ ← Belief-Generation(b, a, o)
                g(s′) ← g(s) + cost(a)
                if b′ ∈ closed then
                    open.push(s′, b′)
                    closed ← closed ∪ b′
                end
            end
        end
    end
    return obs-sequence for farthest_equi

procedure Belief-Generation(b, a, o)
    b′ ← {}
    for s ∈ b do
        for a ∈ A do
            if a |= prec(a) and O(\( \hat{a} \), s, \( \hat{s} \)) = o then
                b′ ← b′ ∪ \( \pi(\hat{s}, \hat{a}) \)
            end
        end
    end
    return b′
```

For each of the domains, we randomly generated 50 problem instances. For the Blocksworld domain, we generated problems with 4 to 8 blocks and towers of maximum height 4 for both initial and goal states. For the Logistics domain, we generated problems with goals consisting of 2 to 6 facts. For the Zenotravel domain, we generated problems with goals consisting of 2 to 6 facts. We generated 5 random candidate goals (n=5) for each problem.

In order to explore the first evaluation objective, we generated both partially and fully observable observation models for all the three domains. The partially observable models have many-to-one mapping of action-state pairs to observation symbols. For the sake of simplicity, we used lifted action names as observation symbols. Therefore, the grounded actions taken and associated states are mapped to the cor-
Table 1: Empirical evaluation for different types of observation models. We report average percentage of obfuscated plan length, and the average and standard deviation of time taken (in seconds) to compute the obfuscated plan.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Metrics</th>
<th>Observation Models</th>
<th>Many-to-One</th>
<th>One-to-One</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocksworld</td>
<td>Avg obfuscated length (%)</td>
<td>81.50</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg run time</td>
<td>46.85</td>
<td>58.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD run time</td>
<td>79.95</td>
<td>73.24</td>
<td></td>
</tr>
<tr>
<td>Logistics</td>
<td>Avg obfuscated length (%)</td>
<td>84.06</td>
<td>62.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg run time</td>
<td>244.68</td>
<td>256.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD run time</td>
<td>249.46</td>
<td>250.12</td>
<td></td>
</tr>
<tr>
<td>Zenotravel</td>
<td>Avg obfuscated length (%)</td>
<td>73.75</td>
<td>48.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg run time</td>
<td>216.14</td>
<td>224.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD run time</td>
<td>216.49</td>
<td>213.68</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Empirical evaluation to explore the cost versus obfuscation trade-off. We examine the extent of obfuscation for different cost-bounds. We report average percentage of obfuscated plan length.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Metrics</th>
<th>Cost-bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocksworld</td>
<td>Avg obfuscated length (%)</td>
<td>+20% 71.90 77.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+50% 73.25 83.58</td>
</tr>
<tr>
<td>Logistics</td>
<td>Avg obfuscated length (%)</td>
<td>+20% 65.81 69.87</td>
</tr>
<tr>
<td>Zenotravel</td>
<td>Avg obfuscated length (%)</td>
<td>+20% 65.81 69.87</td>
</tr>
</tbody>
</table>

4.2 Results

The evaluation results are presented in Tables 1, 2 and 3. We modified the STRIPS planner pyperplan (Alkhazraji et al. 2016) to implement our algorithms. To compute equidistant states we used lmcut heuristic. We ran the experiments with v = 3 for all the domains. We ran our experiments on 2.7 GHz Intel Core i7 processor with 16 GB RAM. The experiments were run with 15 minutes time-out for each problem instance. The following number of problems reached time-out before a solution could be found: 4 out of 50 problems in the Blocksworld domain, 19 out of 50 problems in Logistics and 22 out of 50 problems in Zenotravel. These problems were not considered in the results.

Table 3: Empirical evaluation to explore differences in optimal plan to goal and obfuscated plan to goal. We report average plan cost and average, standard deviation of time taken in seconds to compute the solution to the goal.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Metrics</th>
<th>Optimal Plan</th>
<th>Obfuscated Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocksworld</td>
<td>Avg plan cost</td>
<td>5.64</td>
<td>6.57</td>
</tr>
<tr>
<td></td>
<td>Avg run time</td>
<td>0.11</td>
<td>46.85</td>
</tr>
<tr>
<td></td>
<td>SD run time</td>
<td>0.05</td>
<td>79.95</td>
</tr>
<tr>
<td>Logistics</td>
<td>Avg plan cost</td>
<td>26.40</td>
<td>27.94</td>
</tr>
<tr>
<td></td>
<td>Avg run time</td>
<td>14.87</td>
<td>244.68</td>
</tr>
<tr>
<td></td>
<td>SD run time</td>
<td>23.77</td>
<td>58.39</td>
</tr>
<tr>
<td>Zenotravel</td>
<td>Avg plan cost</td>
<td>8.3</td>
<td>10.79</td>
</tr>
<tr>
<td></td>
<td>Avg run time</td>
<td>10.18</td>
<td>216.14</td>
</tr>
<tr>
<td></td>
<td>SD run time</td>
<td>13.03</td>
<td>216.49</td>
</tr>
</tbody>
</table>
obfuscated plans, the plan cost incurred for the obfuscation guarantee is not too high.

5 Related Work

Planning and diagnosis have long been recognized for their inferential similarities (Sohrabi, Baier, and McIlraith 2010). When planning systems are deployed, diagnosis is seen as a mechanism to refine its models of its own actions (Kuhn et al. 2008), the environment (Molineaux, Kuter, and Klenk 2012), and of adversary capabilities (Birnbaum et al. 1990). The combination of planning, execution, diagnosis, and learning underpins much of the research in the Metacognition (Cox 2005) and Goal Reasoning (Aha 2018) communities. From this perspective, our work is an extension to understanding how planning, goal reasoning, and execution interact in an adversarial world.

Recently, there has been some interest in exploring notions of privacy preservation, deception, etc., in adversarial scenarios (Kulkarni, Srivastava, and Kambhampati 2018; Pozanco et al. 2018; Masters and Sardina 2017; Shekhar and Brafman 2018; Keren, Gal, and Karpas 2016b). In Kulkarni, Srivastava, and Kambhampati (2018), the authors introduce the problem of goal obfuscation and provide a satisfying solution to the problem, which is not guaranteed to be secure. In Pozanco et al. (2018), the authors explore a setting, where an agent plans to prevent another agent from achieving certain goal. In this case, both the agents are actively planning towards a goal. However the authors do not use any obfuscating strategy to hide their intent of blocking. In Masters and Sardina (2017), the authors present an approach to obfuscate goals by making one goal more likely than the other, however their approach does not support deception when the adversary knows their algorithm. In Keren, Gal, and Karpas (2016b), the authors obfuscate a goal with only one candidate goal that shares maximal non-distinct path, obfuscating part of the plan. Most of these works use goal-recognition/plan-recognition modules (Ramirez and Geffner 2009; 2010; E-Martin, R-Moreno, and Smith 2015; Sohrabi, Riabov, and Udrea 2016; Keren, Gal, and Karpas 2016a) to make inferences about the agent’s goals and to achieve deception. However, using a goal recognition module will result in the system being prone to making assumptions about the observer’s goal-recognition capabilities. On the other hand, we do not make any assumptions about the observer’s goal recognition capability but instead provide obfuscation for the worst case adversary. We also explore the obfuscation versus cost trade-off in such scenarios. We do this by computing a cheapest solution to a goal obfuscation problem that is secure and follows certain standard cryptography assumptions.

6 Conclusion

In this work, we presented an approach to compute secure goal-obfuscated plans to conceal the true goal of an AI agent from an adversarial observer. Our approach provides a cost-efficient solution that satisfies four standard cryptographic assumptions to ensure that goal obfuscated plan is secure. Under these assumptions, the AI agent may incur an additional cost to reach its true goal, but the adversary will not be able to diagnose the true goal of the agent. Depending on the resource budget of the agent, it can modulate the amount of obfuscation it needs. A secure goal-obfuscated solution is achieved by obfuscating the true goal of the agent with $v - 1$ other candidate goals. In order to choose these candidate goals, we introduce a goal similarity measure that aids in selecting goals that share common landmarks with the true goal. After selecting the set of decoy goals, we perform a state space search and followed by a bounded length belief space search to compute a secure goal-obfuscated solution. We present some theoretical guarantees on the goal obfuscation mechanism, and evaluate our approach using three IPC domains, BlocksWorld, Logistics and Zenotravel, to show the feasibility and usefulness of our approach.

This work opens a number of research questions. First, the approach presented here is greedy in that the initial selection of v goals is not revisited. While exploring all possible sets of goals is computationally intractable, additional work should define methods with intelligent backtracking and improved heuristics. Second, the approach depends on existence of equidistant states in a domain. There could be domains where such states are hard to find or do not exist for some problems. In future work, we intend to explore secure solutions for such domains. Third, to demonstrate the value of this approach, we would like to apply it to real world problems. In doing so, additional features of the observation model may be considered.

References

Bryce, D. 2014. Landmark-based plan distance measures for diverse planning. In ICAPS.

Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2010. Diagnosis as planning revisited. In KR.
