Motivation & Contributions

- For human-robot teaming scenarios, if the behaviors of robotic agents are incomprehensible to the humans, then it can impose cognitive load on humans and potentially introduce safety risks.
- In order to overcome these issues, in the plan synthesis process we not only consider planning model of the agent but also consider human’s interpretation of the robot’s behavior.
- This interpretation refers to human’s understanding of robot’s capabilities, mental states, etc.
- Differences between the actual robot model and human interpretation of the robot model can cause confusion and surprise when the human finds robot’s behavior different from his/her expectations.
- The difference in the model exists because human’s understanding about the robot’s model is often incomplete and inaccurate.
- A challenge in addressing this problem is that the human’s understanding of the agent’s model is inherently hidden and unknown.
- We propose a formulation to capture and learn this hidden model. We then integrate it in our planning process to generate plans as per human’s expectation of robot plans.

Contributions:
- Introduced the concept of explicability for robot task planning.
- Incorporated explicability as a heuristic in explicable plan generation process.
- Investigated two problem scenarios:
 - Human as a passive observer
 - Human-robot peer-to-peer teams.
- Evaluated the system for both scenarios with physical robot experiments.

Problem Formulation (Human as Passive Observer)

Given a goal, the objective is to find a robot plan that minimizes a weighted sum of cost of robot plan and differences between robot plan based on \(M_h \) and human’s expectation of robot plan based on \(M_h^* \).

\[
\begin{align*}
\text{arg min}_{\pi_{st}} & \quad \text{cost}(\pi_{st}, M_h) + \alpha \cdot \text{dist}(\pi_{st}, \pi_{st}^*) \\
\text{dist}(\pi_{st}, \pi_{st}^*) &= F(\pi_{st}) \quad \text{where} \quad F(\pi_{st}) = \text{C}(\pi_{st})\end{align*}
\]

\(L^* \) is the labeling scheme of the human for robot plans based on \(M_h^* \). \(L_h^* \) is the learned model of \(L^* \). We use linear chain conditional random fields as the graphical model for learning because of their abilities to model sequential data.

Plan Synthesis using Explicability Heuristic

Experimental Analysis (Human as Passive Observer)

- The robot’s goal is to build a tower of a certain height using blocks.
- There are two types of blocks, light and heavy, but that information is hidden from humans.
- Picking up the heavy blocks is costly than the light blocks for the robot.
- Hence, from the human’s perspective, the robot may sometimes choose seemingly more costly (i.e., longer) plans to build a tower.
- In this evaluation, we only use one task label “building tower”.
- For all testing problems, the labeling process results in 77.8% explicable actions for OPT and 97.3% explicable actions for FF-EXPD.
- The average explicability measures for FF-EXPD and OPT are 0.98 and 0.78, and the average scores are 9.65 and 6.92, respectively.

Problem Formulation (Human as Active Collaborator)

- The robot has access to it’s own planning model and approximate planning model of the human, \(M_h^* \).
- In the planning process, robot has to not only consider \(M_h^* \) but also the actual human planning model \(M_h \) which may be different from \(M_h^* \).
- Composite plan, \(\pi_c \), captures actions performed by both human and robot to achieve their goals.

\[
\begin{align*}
\arg\min_{\pi_{st}} & \quad \text{cost}(\pi_{st}, M_h) + \alpha \cdot \text{dist}(\pi_{st}, \pi_{st}^*) \\
\text{dist}(\pi_{st}, \pi_{st}^*) &= F(\pi_{st}) \quad \text{where} \quad F(\pi_{st}) = \text{C}(\pi_{st})\end{align*}
\]

\(L_c^* \) is the learned model of which takes labeled traces of composite plans as its training examples. Composite plans have alternate agent actions.

Goal of robot is to form EAT and goal of human is to form PEN