
Memory-Aware Application Mapping on
Coarse-Grained Reconfigurable Arrays�

Yongjoo Kim1, Jongeun Lee2,��, Aviral Shrivastava3, Jonghee Yoon1,
and Yunheung Paek1

1 School of EECS, Seoul National University, Seoul, Korea
2 School of ECE, Ulsan National Institute of Science and Technology, Ulsan, Korea

Tel.: +82-52-217-2116
jlee@unist.ac.kr

3 Compiler Microarchitecture Lab, Arizona State University, USA

Abstract. Coarse-Grained Reconfigurable Arrays (CGRAs) are a very promis-
ing platform, providing both, up to 10-100 MOps/mW of power efficiency and
are software programmable. However, this cardinal promise of CGRAs criti-
cally hinges on the effectiveness of application mapping onto CGRA platforms.
While previous solutions have greatly improved the computation speed, they have
largely ignored the impact of the local memory architecture on the achievable
power and performance. This paper motivates the need for memory-aware appli-
cation mapping for CGRAs, and proposes an effective solution for application
mapping that considers the effects of various memory architecture parameters
including the number of banks, local memory size, and the communication band-
width between the local memory and the external main memory. Our proposed
solution achieves 62% reduction in the energy-delay product, which factors into
about 47% and 28% reduction in the energy consumption and runtime, respec-
tively, as compared to memory-unaware mapping for realistic local memory ar-
chitectures. We also show that our scheme scales across a range of applications,
and memory parameters.

1 Introduction

Coarse-Grained Reconfigurable Arrays, or CGRAs, are a very promising platform, pro-
viding up to 10 to 100 MOps/mW of power efficiency [1] while still retaining software
programmability. CGRAs are essentially an array of processing elements (PEs), like
ALUs and multipliers, interconnected with a mesh-like network. PEs can operate on

� This work was supported by the Korea Science and Engineering Foundation(KOSEF) NRL
Program grant funded by the Korea government(MEST) (No. 2009-0083190), the Engineering
Research Center of Excellence Program of Korea Ministry of Education, Science and Technol-
ogy(MEST)/ Korea Science and Engineering Foundation(KOSEF) (R11-2008-007-01001-0),
Seoul R&BD Program(10560), the Korea Research Foundation Grant funded by the Korean
Government(MOEHRD) (KRF-2007-357-D00225), 2009 Research Fund of the UNIST (Ulsan
National Institute of Science and Technology), and grants from Raytheon, Stardust foundation,
and NSF (grant no. 0916652).

�� Corresponding author.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 171–185, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

172 Y. Kim et al.

the result of their neighboring PEs connected through the interconnection network. In
addition, each PE has a small number of local registers to store constants and tempo-
rary values. Array variables are typically stored in the local memory, also called frame
buffer, which is an on-chip SRAM memory with a very high bandwidth toward the
PE array. The word-wide datapaths, area-efficient routing, and word-level programma-
bility make them especially suited for multimedia and compute-intensive applications,
whereas FPGAs can be more appropriate for complex logic and bit manipulation. Sev-
eral CGRAs such as MorphoSys [2], RSPA [3], and ADRES [4], have been proposed
and implemented, and a comprehensive summary of many of them can be found in [5].

One of the biggest challenges for CGRAs is application mapping, or compilation.
Compilation for CGRAs has traditionally focused on two issues: i) placing operations
(such as arithmetic/logic, multiplication, and load/store) of a loop kernel onto the PE
array, and ii) guaranteeing the data flow, or communication, between operations using
the existing interconnection resources. The third dimension, which has been typically
ignored in previous CGRA compilation techniques [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], is
where to place data, typically array variables, in the local memory. We refer to opera-
tion placement and array placement as computation mapping and data mapping, respec-
tively. Data mapping is not an issue if the local memory has uniform memory access
(UMA) architecture—for instance, if the local memory consists of a single large bank.
Then any PE can access any local memory address with equal timing, and thus it does
not matter where to place an array. However, if the local memory has nonuniform mem-
ory access (NUMA) architecture—for instance, if it consists of multiple banks and each
bank is connected to only one row of PEs—where to place array variables among multi-
ple banks can affect computation mapping and greatly impact the quality of the overall
mapping. Since the local memory of a CGRA is accessed by many PEs each cycle, typ-
ically more than a dozen ports exist between the local memory and PEs. Implementing
UMA architecture with such a large number of ports is very expensive, either by single-
bank multi-port memory [9, 13] or through hardware arbitration [16]. Thus a compiler
technique that can effectively manage the complexity of NUMA architecture for CGRA
mapping is highly desirable.

Computation mapping and data mapping are two very closely related problems, so
solving them sequentially does not give the optimal solution. If array placement is fixed
first, and operations are placed later, the computation mapping problem will involve far
more constraints than without array placement, that it may be unsolvable or generate
poorer solutions than without array placement. Besides, it is not clear how to fix array
placement first without doing at least part of computation mapping. On the other hand,
if computation mapping is done first, it automatically determines data mapping, which
can lead to other problems. First, the same array may be placed in multiple banks (du-
plicate array) if the array is reused in multiple references in the loop (i.e., by multiple
loads with different indexes). This can lower the effective size of the local memory and
can significantly degrade the performance especially if the local memory is not very
large. Second, bank utilization can be unbalanced to a large degree, which can lower
the performance if the unbalance in the bank utilization causes extra buffering in the
local memory. Third, in recurrent loops, dependent memory operations must be able to

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 173

0%

20%

40%

60%

80%

100%

Td

Tc

Fig. 1. Many multimedia kernels are memory-bound on RSPA. Td= td/(tc + td) and Tc=
tc/(tc + td). Asterisk (*) indicates recurrent loop, where II and tc can be increased due to data
dependence.

access the same array from the same bank. This could be taken care of by constraining
dependent memory operations to be mapped to the same rows, for instance, but other
constraints (e.g., port contention, memory size restriction) may also be necessary. In
general, to guarantee the correctness and optimality of mapping for memory-bound
loops on NUMA CGRAs, we must consider not only computation mapping but also
data mapping. In this paper we propose a compilation technique, which is aware of the
local memory architecture and can find near-optimal mapping considering both array
variables and computation operations in memory-bound loops.

After motivating in Section 2 the need for considering the memory architecture and
data placement during mapping, we explain our target architecture and application map-
ping in general in Section 3, and discuss the related work in Section 4. In Section 5 we
present our memory-aware heuristic that can be applied to any modular scheduling
algorithm such as [9, 13]. Our proposal introduces new costs such as data reuse oppor-
tunity cost and bank balancing cost to steer the mapping process to be more aware of
the architectural peculiarities. Our experimental results indicate that not only is our pro-
posed heuristic able to achieve near-optimal results as compared to single-bank memory
mapping, it can also achieve 62% reduction in the energy-delay product as compared
to memory-unaware mapping for multi-bank memory, which factors to 47% and 28%
reductions in the energy consumption and runtime, respectively. We also demonstrate
that our scheme scales across a range of applications, and memory parameters.

2 Why Consider Data Placement?

If the local memory is large enough, duplicate arrays and unbalanced bank utilization
may not be a problem—simply duplicate arrays as many times as needed if each mem-
ory bank is unlimited. However, we find that it is not the case in many CGRAs such as
MorphoSys and RSPA, and in fact, for larger arrays and loops the entire arrays cannot fit
in the local memory and multiple buffer switchings are necessary even during a single
loop execution. To minimize slowdown due to buffer switching, those architectures of-
ten provide hardware double buffering [2], such that computation (on the PE array) and

174 Y. Kim et al.

data transfer (between the local memory and the system memory) can work on differ-
ent hardware buffers, overlapping computation and data transfer, and buffer switching
can be done instantly, typically in a few cycles. Even with such hardware support, for
memory-bound applications it is hard to avoid data transfer becoming the performance
bottleneck, since memory bandwidth is not as scalable as increasing the number of PEs
on a CGRA.

Figure 1 plots the ratio between tc and td of important loop kernels from MiBench
and SPEC benchmark, using the EMS algorithm [13] on the RSPA architecture [3].
The terms tc and td are the computation time and the data transfer time for a tile of a
loop, where tile is defined by buffer switching. Then the total execution time of a tile
is determined by max(tc, td). The graph shows that all these loop kernels are indeed
memory-bound, i.e., td > tc, with the average tc/(tc + td) being just 22%. Even if we
double the memory bandwidth (of between the local memory and the system memory)
from 2 bytes per cycle to 4 bytes per cycle, most of the loops still remain memory-
bound, with the average tc/(tc + td) increasing to just 37%. Thus it is important to
optimize the data part of the mapping, not just the computation part of it, and even
sacrificing computation mapping to some degree in order to gain in data mapping, or in
other words balancing tc and td, could lead to enhancement in the overall performance.

3 Background: Architecture and Application Mapping

3.1 CGRA Architecture

CGRA is essentially an array of processing elements (PEs), connected through a mesh-
like network (see Figure 2(b)). Each PE can execute an arithmetic or logic operation,
multiplication, or load/store. PEs can load or store data from the on-chip local mem-
ory, but they can also operate on the output of a neighboring PE connected through the
interconnect network. Many resource-constrained CGRA designs have some PEs ded-
icated for some specific functionality. For example, in each row, typically a few PEs
are reserved for multiplication in addition to ALU operations, and a few can perform
loading and storing from/to the local memory. The functionality of a PE, i.e., the choice

Fig. 2. CGRA architecture and application mapping

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 175

of source operands, destination of the result, and the operation it performs is specified
in the configuration, which is generated as a result of compiling the application on to
the CGRA.

A CGRA processor is used as a coprocessor to a main processor. The main proces-
sor manages CGRA execution, such as loading of CGRA configurations and initiating
CGRA execution, through memory-mapped I/O. Once the CGRA starts execution, the
main processor can perform other tasks. Interrupts can be used to notify the comple-
tion of CGRA execution. The local memory of a CGRA is managed by the CGRA
through DMA. Hardware double buffering allows for full overlap between computation
and data transfer on the CGRA, as well as quick switches between buffers; this be-
comes very critical for large loops, which may require multiple buffer switches during
the execution of a single loop.

3.2 Application Mapping

CGRAs are typically used to accelerate the innermost loops of applications, thereby
saving runtime and energy. The innermost loop of a perfectly nested loop can be repre-
sented as a data flow graph, in which the nodes represent micro-operations (arithmetic
and logic operations, multiplication, and load/store), and the edges represent the data
dependency between the operations. A loop kernel from MPEG2 is illustrated in Fig-
ure 2(a), where dark nodes represent memory operations. While not for this loop, the
data dependency can be in general loop-carried. The task of mapping an application
onto a CGRA traditionally comprises of mapping the nodes of the data flow graph onto
the PE array of the CGRA, and to map the edges onto the connections between the PEs.
Since the mesh-like interconnection can be restrictive for application mapping, most
CGRAs allow PEs to be used for routing of data (routing PE). In the routing mode, the
PE does not perform any operation, but just transfer one of the inputs to its output. This
flexibility can be exploited by allowing the edges in the data flow graph to be mapped
onto paths (composed alternatively of interconnection and a free PE, starting and end-
ing in an interconnection) in the CGRA. Pipelining is explicit in the CGRA, in the sense
that the result of computation inside one PE can be used by the neighboring PEs in the
next cycle. For effective application mapping, the compiler must software-pipeline the
loop before mapping it onto the the PEs for effective mapping. Thus in addition to the
problem of expressing the application in terms of the functionality of PEs, a CGRA
compiler must explicitly perform resource allocation, pipelining, and routing of data
dependencies on the CGRA. It is for these reasons that the problem of application map-
ping on CGRA is challenging.

4 Related Work

Earlier research on CGRAs was mostly about architecture design [5], but with the
recognition that application mapping is the bottleneck, recent work increasingly focuses
on application mapping techniques.

176 Y. Kim et al.

4.1 Architecture

Data transfer architectures between local memory and PEs can be classified into implicit
load-store and explicit load-store architecture. Implicit load-store CGRA architectures,
e.g., MorphoSys [2], do not have explicit load and store instructions. Data has to be
pre-arranged in the local memory, organized like a queue, and the topmost element is
broadcast to the CGRA every cycle. On the other hand, in explicit load-store CGRAs,
e.g., ADRES [4], PEs can explicitly compute the address of the memory location that
they intend to access, and read/write to that location. While the implicit load-store ar-
chitectures are potentially much more power efficient, they are more challenging to
program, and also incur penalties relating to the efforts required to arrange the data in a
very specific order in the local store.

Local memory can be designed as single-bank or multi-bank. Single-bank memory
makes programming much easier; however, it is very difficult to provide all the neces-
sary ports for the PE array with just one bank. One solution is to use multi-port SRAM
cells, which are however extremely expensive in terms of area, power, and speed [17].
With multi-bank memory, it is the responsibility of the programmer/compiler to make
sure the data that a PE accesses is present in a bank that it has access to. Alternatively,
one can use hardware arbitration to make every bank accessible to any PE [16], which
makes the local memory design more complicated with higher power, area, and possi-
bly cycle time compared to multi-bank memory without hardware arbitration. Our work
provides a software solution rather than a hardware solution to the problem of managing
multi-bank memory.

Hardware double buffering, e.g., MorphoSys [2] and RSPA [3], can speed up the
data transfer between the system memory and the CGRA local memory, while some ar-
chitectures, e.g., ADRES [16], opt for a single large buffer. Double buffering becomes
more useful if the local memory size is smaller, or the loops and arrays of the applica-
tions are larger. We assume explicit load-store, multi-bank, and double-buffered local
memory in this work.

4.2 Compilation

Most previous work on application mapping for CGRA [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
does not explicitly consider the local memory architecture or data placement. They
assume that all the required data is already present in the local memory, and every load-
store PE can access that data whenever they need to. Even with such a simplification,
the application mapping problem for CGRA is shown to be very hard [11], having to
deal with operation placement on a 2D array considering the communication between
them (spatial mapping) [12], as well as possibly changing configurations every cycle
(temporal mapping) [8, 13].

One exception to this is [18], which assumes a hierarchical memory architecture,
where the PEs are connected to a L0 local memory, which connects to the external main
memory through an L1 local memory. Since both these local memories are scratchpads,
and therefore statically scheduled, their main interest is in improving the reuse between
the L0 and L1 local memories. An early work [19] on CGRA presents a methodology
to evaluate memory architectures for CGRA mapping; however, it lacks a detailed map-
ping algorithm. [20] also considers memory architecture for mapping, and is therefore

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 177

most closely related to our work. However, their mapping assumes multi-bank memory
with arbitration logic and single buffering, and therefore is not applicable to our tar-
get architecture while we explore the impact of partitioned, or multi-banked, memory
architecture and also explore the impact of limited memory bandwidth on the mapping.

5 Our Approach

The real challenge of considering data placement during CGRA mapping is in how to
minimize both tc and td together within a single framework or algorithm. Simply min-
imizing td is trivial; for instance, fixing the placement of all the arrays beforehand will
do, but it may increase tc excessively. Considering td only is what has been typically
done in previous approaches, which may fail to minimize the overall t, or the maximum
of tc and td. Moreover, data mapping should be emphasized only if the application is
memory-bound, which adds to the complexity of our problem. Thus, our CGRA map-
ping problem considering both computation and data mapping is more complicated
than the traditional CGRA mapping problem considering computation only, which is
already NP-hard [11]. Hence we propose a heuristic in this paper. We will also demon-
strate through our experiments that our heuristic can achieve near-optimal results for
many loops.

Our heuristic considers: i) minimizing duplicate arrays (or maximizing data reuse),
ii) balancing bank utilization, and iii) balancing tc and td. A unique feature of our
heuristic is that it merely defines some cost functions for those memory-related con-
siderations, rather than prescribing a whole new algorithm, so that our heuristic can
be easily integrated with other existing memory-unaware mapping algorithms. While
our technique is generally applicable to any modular scheduling algorithm considering
one operation at a time such as [8, 13], for the sake of the discussion we use the EMS
algorithm in this paper as it is one of the best known.

5.1 Balancing Computation and Data Transfer

To balance optimization effort for computation and data parts we first perform perfor-
mance bottleneck analysis. Performance bottleneck analysis determines whether it is
computation or data transfer that limits the overall performance. We define the data-
transfer-to-computation time ratio (DCR) as DCR = td/tc. For this we generate an
initial, memory-unaware mapping and compute tc and td. tc is equal to the II multi-
plied by the tile size, and td includes both, the time to bring the data needed for the
iteration, and also the time to writeback the data that needs to be committed back to the
memory, after each tile. A loop is memory-bound if DCR > 1, and roughly represents
the optimization opportunity for our memory-aware mapping.

5.2 Maximizing Data Reuse

Temporal reuse of data, or the use of the same data or array elements in different iter-
ations of a loop, is frequently found in many loop kernels. Temporal as well as spatial
reuse is automatically exploited by data caches for general purpose processors; how-
ever, for CGRAs everything must be explicitly controlled by compilers. Traditional
compilation flows for CGRA, which are memory unaware, do not treat specially arrays

178 Y. Kim et al.

with reuse. As a result, two load operations, even if they read from the same array,
will typically be mapped to different rows. Note that this is not an issue of functional
correctness, but of performance in NUMA CGRAs, since duplicating the arrays in mul-
tiple banks solves the correctness problem. An alternative approach is to realize reuse
by mapping to the same row all the load operations accessing the same array, which we
call reuse through the local memory.2

Reuse through the local memory has the benefit of lowering the local memory pres-
sure, but at the cost of constraining the computation mapping. Therefore whether and
how much reuse to realize should be decided carefully for optimal results. To guide the
decision we introduce data reuse opportunity cost (DROC). DROC is defined for an
operation and a PE, and measures the goodness of a reuse opportunity which will be
forfeited if the operation is mapped to the PE. Intuitively, if two load operations have
a reuse relation (i.e., they load from the same array), placing them on the same row
has merit, which is forfeited if they are placed to PEs on different rows. This reuse
opportunity is what DROC tries to quantify.

Data Reuse Analysis: Data reuse analysis finds the amount of potential data reuse
between every pair of memory operations. Our data reuse analysis first creates a Data
Reuse Graph (DRG) from the data flow graph of a loop. DRG is an undirected graph,
where nodes correspond to memory operations and edge weights approximate the
amount of reuse between two memory operations. Edges with zero weight are omit-
ted. If two memory operations access different arrays, then the edge weight is zero.
Otherwise, the edge weight is estimated to be TS − rd, where TS is the tile size, and
rd the reuse distance in iterations. Although the eventual tile size for the mapping can
only be determined after the loop has been mapped, and it depends on the amount of
reuse realized, even an approximate value will do. This is because, all we want by these
weights is that the memory operations that share more data should have greater chances
to be mapped to the same row. We approximate TS ≈ MS/Di, where MS is the size
of the local memory, and Di is the average amount of data that needs to be transferred
between the local memory and the external main memory for one iteration of our initial
memory-unaware mapping (DT = T · Di). MS/Di would have been the tile size for
the initial memory-unaware mapping on a single-bank memory architecture. The bigger
challenge is to estimate rd, and in general, it can be extremely hard to analyze, espe-
cially in the presence of pointers and aliases. Fortunately in many cases reuse takes a
very obvious form which can be found even by a very simple analysis. When the access
functions (or index expressions) of two references to the same array have an affine form
with the same coefficient, rd can be approximated to the difference in the constants
divided by the coefficient.3

2 When there is data reuse between two memory operations, the reuse can be realized by rout-
ing the data through either the register file (assuming it is rotating) , through routing PEs, or
through the memory. Routing data either through the register file or through routing PEs can be
wasteful since the involved PEs cannot perform any other operation. In addition, the number
of wasted PEs to route data using these schemes is proportional to II , and therefore can be
rather large. Therefore, we realize all the data reuse through the local memory.

3 Only if the coefficient divides the difference; otherwise, there is no reuse between the two
references.

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 179

Once the DRG is constructed, computing DROC is easy. Given scheduling context
information such as what operations have been already scheduled and which operation
is about to be scheduled, we first find the set of edges, called frontier edge set. For op-
eration u, which is about to be scheduled, the frontier edge set of u includes every edge
that connects u and another memory operation, v, in the DRG, and can be found very
easily. Then for each edge e in the frontier edge set, we compute its reuse opportunity
as roe = we ·DCR/su, where we is the nonzero weight of edge e in the DRG, DCR is
the data-transfer-to-computation time ratio of the loop, and su is the size of the frontier
edge set, or the number of edges in it. (Dividing by the number of edges is necessary
to prevent DROC from increasing disproportionately compared to other costs that may
exist.) Finally, the reuse opportunity of each edge e induces DROC of the same amount,
for all the load-store PEs other than the PE to which v is mapped. DROC induced by
all reuse opportunities are added up if the frontier edge set is larger than one. DROC is
zero if the frontier edge set is empty.

Example: Consider mapping the DFG shown in Figure 3(b) (dark nodes are mem-
ory load operations) onto the 2x2 CGRA shown in Figure 3(a) (dark PEs are load-store
PEs). The DRG for the DFG is shown in Figure 3(c). Figure 3(d)–(g) illustrate the map-
ping results in a tabular format, where the vertical direction represents time in cycles.
Suppose that we are about to schedule the edge connecting operations 7 and 8 after
having scheduled operations 0 through 6 as shown in Figure 3(d). Operation 7 is a load
operation B[i + 1], and operation 8 is an arithmetic operation.

The EMS algorithm works as follows: first the routing costs for each open PE slot
where the memory operation can be scheduled are updated as in Figure 3(d). Routing
cost is calculated by multiplying the unit routing cost (which is assumed to be 10) by
the number of routing PEs needed to map the edge. In this example, if we schedule
operation 7 in time slot 1 of PE3, at least two routing operations are needed to map
operation 8. Thus, routing cost in the time slot 1 of PE3 is 20. Considering these costs,
operation 7 will be mapped onto the time slot 3 of PE1, which has the minimum cost.
The final solution generated by EMS is shown in Figure 3(e). However, this mapping
requires array B to be duplicated in two banks.

DROC helps avoid duplicating reused arrays. In the same example the DROC cost
induced by the reuse relation between operations 1 and 7 is 30, assuming that the DCR
parameter is 3. This DROC cost is added to all the load-store PEs except for PE3, which
forces operation 7 to be scheduled onto the time slot 2 of PE3, as shown in Figure 3(g).
Though this new mapping results in the use of an extra PE as a routing PE, it increases
the utilization of array B, which may reduce the overall execution time.

5.3 Balancing Bank Utilization

The next important issue in application mapping onto a NUMA CGRA is that, if the
scheduler is not careful, it can skew the distribution of the data in the memory banks.
For example, the solution can result in mapping all the data to just one bank, and not
utilizing the other banks. This can happen, if the application mapping is unaware of
the banked memory architecture, but also if we apply our data reuse optimization too
aggressively and map all the arrays to the same bank. Such a mapping can reduce the
performance, since it decreases the effective local memory size, results in smaller tiling

180 Y. Kim et al.

Local Memory

Bank1

Bank2

0 1

3

5

2

6

8

A[i] B[i]

A[i+1]

4

7
B[i+1]

(a) CGRA Architecture (c) DRG

PE0 PE1 PE2 PE3

0

1 20

2 10

3 0 20

4 10 10

0 1

3

5

2

6

4

PE0 PE1 PE2 PE3

0

1

2

3 5

4

0 1

3

5

2

6

4

7

8

A[i],A[i+1],B[i+1] B[i]A[i],A[i+1] B[i]

(d) Cost values for operation 7 by EMS (e) Completed mapping by EMS

PE0 PE1 PE2 PE3

0

1 20

2 10

3 30 20

4 40 10

0 1

3

5

2

6

4

PE0 PE1 PE2 PE3

0

1

2

3

4

0 1

3

5

2

6

4 7

8

A[i],A[i+1] B[i],B[i+1]A[i],A[i+1] B[i]

(f) Cost values for operation 7 by Ours (g) Completed mapping by Ours

7r

PE Array

0 1

2

A[i] B[i]

A[i+1]
7

B[i+1]

(b) DFG

10 10
PE0 PE1

PE2PE3

Bank1 Bank2 Bank1 Bank2

Bank1 Bank2 Bank1 Bank2

Fig. 3. Data reuse example. Mapping operation 7 to PE3 allows the reuse of array B between
operations 1 and 7. Assuming: Base Routing Cost = 10, DCR = 3.

factor for the loop, and may cause very frequent buffer switching for hardware buffer-
ing. One desirable shape of the data placement is uniform distribution of the data among
the banks. This can be rather easily solved by adding an additional cost to the PEs to
which load/store operations have been mapped, called bank balancing cost. We define
the bank balancing cost for a PE p, as BBC(p) = b · m(p), where b is a design pa-
rameter called the base balancing cost, and m(p) is the number of memory operations
already mapped onto PE p.

Figure 4 illustrates our compilation flow. The two analyses, performance bottleneck
analysis and data reuse analysis, are performed before time-consuming modulo schedul-
ing. Memory-aware modulo scheduling refers to the EMS algorithm extended by adding
DROC and BBC to the existing cost function, which does not significantly increase the
complexity of the mapping algorithm. The partial shutdown exploration is explained in
Section 6.3.

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 181

DFG

P fPerformance
Bottleneck
Analysis

Data Reuse
Analysis

DCR DRG

Partial Shutdown
Memory-aware

Modulo Scheduling

Partial Shutdown
Exploration

M iMapping

Fig. 4. Application mapping flow. Note: DFG (Data Flow Graph), DCR (Data-transfer-to-
Computation time ratio), and DRG (Data Reuse Graph).

6 Experiments

6.1 Setup

We demonstrate the effectiveness of our memory-aware compilation heuristic on a set
of important kernels from the MiBench benchmark suite [21], multimedia benchmarks,
and SPEC 2000. Our target architecture is a 4x4 architecture, as illustrated in Fig-
ure 2(b), with load-store units alternating in the two middle columns. The 4x4 con-
figuration is the basic unit in many CGRA architectures including ADRES (4x4 tiles),
MorphoSys (4x4 quadrants), and also frequently used to evaluate various mapping al-
gorithms (e.g., [9, 12, 13]). For the PE array, we assume that a PE is connected to its
four neighbors and four diagonal ones. The local memory architecture has 4 banks,
each connected to each row (i.e., to the load-store unit of the corresponding row). The
detail of the local memory architecture is modeled after the RSPA architecture [3]. The
local memory is double buffered in hardware and the buffers can be switched in one
cycle. The size of each buffer is 768 bytes, or 384 16-bit words, and is connected to the
system memory through a high-performance 16-bit pipelined bus. The system memory
operates at half the frequency of the processor, thus the memory bandwidth is 16 bits
per 2 cycles.

In the literature mapping algorithms are often compared in terms of II, which is valid,
since CGRA processors are under a complete compile-time control; it is like a VLIW
processor without pipeline stall. However II captures the quality of the computation
mapping only, and cannot capture the possible delay due to the memory bottleneck.
We therefore use the CGRA runtime, which is computed by adding up tile execution
times, where tile execution time is the maximum of computation II multiplied by the
tile size and the memory access time for the tile. We assume that an array shared by two
references such as A[i] and A[i + 5] requires T + 5 elements per tile instead of just T ,
where T is the tile size. If an array is duplicated in multiple banks with different offsets,

182 Y. Kim et al.

we assume that the array is loaded twice from the system memory, which is the most
straightforward way to load them; otherwise, the DMA would have to be smart enough
to copy a part of the array from one bank to another, and manage the remaining part.

For the energy model of the CGRA, we consider both the dynamic power and the
leakage power of PEs and memory banks. The dynamic power model of a PE is derived
from RSPA, considering three operating states: ALU (including load/store), multipli-
cation, and routing. The dynamic power model of a memory bank is given by CACTI
5.1 [17]. The leakage power is assumed to be 20% of the dynamic power of an ALU
operation for a PE, and of a read operation for a memory bank.

6.2 Efficiency of Our Memory-Aware Mapping

Though our memory-aware mapping may reduce the total execution time of a loop (i.e.,
max(tc, td)), the computation time (tc) will be minimized in the case of traditional
memory-unaware mappings such as EMS. The minimum computation time could be
realized if single-bank memory were used, although it seems likely to have other neg-
ative effects such as increased cycle time, power, and area, and may cancel out the
benefit. Thus we compare three cases: Ideal (single-bank + EMS), EMS (multi-bank
+ EMS), and MA (multi-bank + our memory-aware extension of EMS). For a realistic
multi-bank local memory, the Ideal single-bank performance only serves as the upper
limit that a realistic multi-bank mapping could achieve. We compare the three cases in
terms of cycle count. In the case of Ideal, the possible cycle time increase is not taken
into account, nor is the memory bandwidth restriction (hence the name). In the case of
EMS, the array placement is determined in a straightforward manner after computation
mapping is done.

Figure 5 compares the runtime of the three cases (in cycle count), normalized to
that of EMS. Comparing Ideal and EMS indicates that for memory-bound loops, the
cost of not considering array placement early in the compilation flow is quite high. By
sequentially mapping computations and arrays, the runtime can increase by more than
40% on average compared to the Ideal case for memory-bound loops. On the other

Fig. 5. Runtime comparison

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 183

Fig. 6. Energy efficiency comparison

hand, if data mapping is considered proactively along with computation mapping as in
our heuristic, the runtime increase can be very effectively suppressed. Compared to the
EMS, our heuristic can reduce the runtime by as much as 30% on average for memory-
bound loops. This strongly motivates the use of less expensive multi-bank memories
for CGRAs rather than the more expensive and more power-dissipating single-bank
memories.

Reduced runtime by our heuristic also translates into reduced energy consumption
on the CGRA. Figure 6(a) compares the energy consumption by the base EMS vs.
our heuristic. While our heuristic can sometimes generate less efficient computation
mappings compared to the base EMS, for instance, by using more routing PEs, our
heuristic can effectively reduce the leakage energy by reducing the runtime, which leads
to significant energy reduction by our heuristic. Accordingly, the EDP, or the energy-
delay product, is also reduced significantly by our heuristic, as indicated by Figure 6(b).

6.3 Partial Shutdown Exploration

For a memory-bound loop, the performance is often limited by the memory bandwidth
rather than by computation, which will be increasingly the case as the number of PEs
increases. For such a case we can dramatically reduce the energy consumption of CGRA
by shutting down some of the rows of PEs and the memory banks, effectively balancing
computation and memory access. While this kind of optimization could be applied with
any mapping algorithm, it becomes more interesting with our memory-aware mapping
heuristic, as both our heuristic and partial shutdown try to exploit the same opportunity
existing in memory-bound loops; one by reducing the memory access load, the other by
reducing the computation rate.

We explore all the partial shutdown combinations on the PE rows and the memory
banks, to find the best configuration that gives the minimum EDP. The design space is
not large, with only 16 configurations to explore as there are 4 rows and 4 banks. The re-
sults are summarized in Figures 5 and 6 (the last bars). The results suggest that the partial
shutdown optimization can considerably reduce the energy consumption and the EDP,
by more than 35% on average, even after our memory-aware heuristic is applied. Com-
pared to previous memory-unaware technique without partial shutdown optimization,
our technique can achieve 62% reduction in the energy-delay product, which factors into

184 Y. Kim et al.

Table 1. Best configurations by partial shutdown exploration (r=#rows, m=#banks)

Mem BW form pred laplace sobel SOR swim calc1 swim calc2 wavelet *compress *GSR *lowpass
1w/2cyc 2r1m 2r1m 3r2m 2r1m 3r1m 3r1m 2r1m 1r1m 1r1m 2r2m
1w/1cyc 2r2m 3r2m 4r4m 2r2m 4r2m 3r2m 3r2m 2r2m 2r2m 2r2m

about 47% reduction in the energy consumption and 28% reduction in the runtime. For
this exploration we also vary the memory bandwidth. The runtime and energy reduction
shows a similar trend (not shown), but interestingly the best configurations (shown in
Table 1) tend to be larger as the memory bandwidth is increased.

Our partial shutdown exploration gives further justification for the multi-bank mem-
ory architecture, as it is more amenable to partial shutdown than the single-bank mem-
ory architecture. And it also reinforces the importance of developing memory-aware
mapping techniques for multi-bank or NUMA memory architectures, such as ours.

7 Conclusion

The promise of Coarse-Grained Reconfigurable Arrays (CGRAs) providing very high
power efficiency while being software programmable, critically hinges on the effec-
tiveness of application mapping. While previous solutions have focused on improving
the computation speed of the PE array, we motivate the need for considering the lo-
cal memory architecture and data placement to achieve higher performance and energy
efficiency for memory-bound loops on CGRAs. We propose an effective heuristic that
can be easily integrated with existing modular scheduling based algorithms, and which
considers various memory architecture parameters including the number of banks, lo-
cal memory size, and the communication bandwidth between the local memory and
the system memory. Our experimental results on memory-bound loops from MiBench,
multimedia, and SPEC benchmarks demonstrate that not only is our proposed heuristic
able to achieve near-optimal results as compared to single-bank memory mapping, it
can also achieve 62% reduction in the energy-delay product as compared to memory-
unaware mapping for multi-bank memory, which factors into 47% and 28% reductions
in the energy consumption and runtime, respectively. Further, our extensive experiments
show that our scheme scales across a range of applications, and memory parameters.

References

1. Bormans, J.: Reconfigurable array processor satisfies multi-core platforms. Chip Design
Magazine (2006)

2. Singh, H., Lee, M.-H., Lu, G., Bagherzadeh, N., Kurdahi, F., Filho, E.: Morphosys: An inte-
grated reconfigurable system for data-parallel and computation-intensive applications. IEEE
Trans. Comput. 49(5), 465–481 (2000)

3. Kim, Y., Kiemb, M., Park, C., Jung, J., Choi, K.: Resource sharing and pipelining in coarse-
grained reconfigurable architecture for domain-specific optimization. In: DATE 2005, Wash-
ington, DC, USA, pp. 12–17. IEEE Computer Society, Los Alamitos (2005)

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 185

4. Mei, B., Vernalde, S., Verkest, D., Lauwereins, R.: Design methodology for a tightly coupled
vliw/reconfigurable matrix architecture: A case study. In: DATE 2004, p. 21224 (2004)

5. Hartenstein, R.: A decade of reconfigurable computing: a visionary retrospective. In: DATE
2001, Piscataway, NJ, USA, pp. 642–649. IEEE Press, Los Alamitos (2001)

6. Lee, J., Choi, K., Dutt, N.: Compilation approach for coarse-grained reconfigurable architec-
tures. IEEE D&T 20, 26–33 (2003)

7. Lee, J., Choi, K., Dutt, N.: An algorithm for mapping loops onto coarse-grained reconfig-
urable architectures. ACM SIGPLAN Notices 38(7), 183–188 (2003)

8. Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: Dresc: a retargetable com-
piler for coarse-grained reconfigurable architectures, December 2002, pp. 166–173 (2002)

9. Park, H., Fan, K., Kudlur, M., Mahlke, S.: Modulo graph embedding: mapping applications
onto coarse-grained reconfigurable architectures. In: CASES 2006, pp. 136–146. ACM, New
York (2006)

10. Hatanaka, A., Bagherzadeh, N.: A modulo scheduling algorithm for a coarse-grain reconfig-
urable array template. In: IPDPS 2007, March 2007, pp. 1–8 (2007)

11. Ahn, M., Yoon, J., Paek, Y., Kim, Y., Kiemb, M., Choi, K.: A spatial mapping algorithm for
heterogeneous coarse-grained reconfigurable architectures. In: DATE 2006, 3001 Leuven,
Belgium, pp. 363–368. European Design and Automation Association (2006)

12. Yoon, J., Shrivastava, A., Park, S., Ahn, M., Jeyapaul, R., Paek, Y.: Spkm: a novel graph
drawing based algorithm for application mapping onto coarse-grained reconfigurable archi-
tectures. In: ASP-DAC 2008, pp. 776–782 (2008)

13. Park, H., Fan, K., Mahlke, S., Oh, T., Kim, H., Kim, H.: Edge-centric modulo scheduling for
coarse-grained reconfigurable architectures. In: PACT 2008, pp. 166–176. ACM, New York
(2008)

14. Venkataramani, G., Najjar, W., Kurdahi, F., Bagherzadeh, N., Bohm, W.: A compiler frame-
work for mapping applications to a coarse-grained reconfigurable computer architecture. In:
CASES 2001, pp. 116–125. ACM Press, New York (2001)

15. Lee, W., Barua, R., Frank, M., Srikrishna, D., Babb, J., Sarkar, V., Amarasinghe, S.: Space-
time scheduling of instruction-level parallelism on a raw machine. In: ASPLOS-VIII, pp.
46–57 (1998)

16. Bougard, B., De Sutter, B., Verkest, D., Van der Perre, L., Lauwereins, R.: A coarse-grained
array accelerator for software-defined radio baseband processing. IEEE Micro 28(4), 41–50
(2008)

17. Thoziyoor, S., Muralimanohar, N., Ahn, J., Jouppi, N.: Cacti 5.1. Technical report (2008)
18. Dimitroulakos, G., Galanis, M., Goutis, C.: Alleviating the data memory bandwidth bottle-

neck in coarse-grained reconfigurable arrays. In: ASAP 2005, Washington, DC, USA, pp.
161–168. IEEE Computer Society, Los Alamitos (2005)

19. Lee, J., Choi, K., Dutt, N.: Evaluating memory architectures for media applications on
coarse-grained reconfigurable architectures. In: Proc. ASAP, pp. 172–182. IEEE, Los Alami-
tos (2003)

20. Dimitroulakos, G., Georgiopoulos, S., Galanis, M., Goutis, C.: Resource aware mapping on
coarse grained reconfigurable arrays. Microprocess. Microsyst. 33(2), 91–105 (2009)

21. Guthaus, M., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench: A
free, commercially representative embedded benchmark suite. In: IWWC, pp. 3–14 (2001)

	Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays
	Introduction
	Why Consider Data Placement?
	Background: Architecture and Application Mapping
	CGRA Architecture
	Application Mapping

	Related Work
	Architecture
	Compilation

	Our Approach
	Balancing Computation and Data Transfer
	Maximizing Data Reuse
	Balancing Bank Utilization

	Experiments
	Setup
	Efficiency of Our Memory-Aware Mapping
	Partial Shutdown Exploration

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

