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Abstract
Continuous technology scaling has brought us to a point, where
transistors have become extremely susceptible to cosmic radia-
tion strikes, or soft errors. Inside the processor, caches are most
vulnerable to soft errors, and techniques at various levels of de-
sign abstraction, e.g., fabrication, gate design, circuit design, and
microarchitecture-level, have been developed to protect data in
caches. However, no work has been done to investigate the effect of
code transformations on the vulnerability of data in caches. Data
is vulnerable to soft errors in the cache only if it will be read by
the processor, and not if it will be overwritten. Since code trans-
formations can change the read-write pattern of program vari-
ables, they significantly effect the soft error vulnerability of pro-
gram variables in the cache. We observe that often opportunity ex-
ists to significantly reduce the soft error vulnerability of cache data
by trading-off a little performance. However, even if one wanted
to exploit this trade-off, it is difficult, since there are no efficient
techniques to estimate vulnerability of data in caches. To this end,
this paper develops efficient static analysis method to estimate pro-
gram vulnerability in caches, which enables the compiler to ex-
ploit the performance-vulnerability trade-offs in applications. Fi-
nally, as compared to simulation based estimation, static analysis
techniques provide the insights into vulnerability calculations that
provide some simple schemes to reduce program vulnerability.

Categories and Subject Descriptors C.4 [PERFORMANCE OF
SYSTEMS]: Fault tolerance; C.3 [SPECIAL-PURPOSE AND
APPLICATION-BASED SYSTEMS]: Real-time and embedded sys-
tems

General Terms Design, Measurement, Reliability, Theory

Keywords cache vulnerability, static analysis, soft errors, code
transformation, compiler technique, embedded processors

1. Introduction
Soft errors are becoming an ever important concern for electronic
system designs manufactured in deep sub-micrometer fabrication
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technologies. Soft errors are transient faults caused due to several
sources, such as static noise in digital circuits, interconnect cou-
pling, charge sharing noise etc., but radiation particle strikes are
responsible for more transient faults than all the other causes com-
bined [30]. Soft errors are especially important for embedded sys-
tems which may be used inside humans, close to humans, in fi-
nancial, medical, and security transactions, and even in hostile and
enemy territory, where there is a critical need for dependable in-
formation. Although the soft error rate in embedded devices such
as handhelds is about once-per-year today, due to its exponential
growth rate with technology generations, it is expected to reach
alarming levels of once-per-day in about a decade [13].

Inside a processor, memory elements are most susceptible to
soft errors, not only because they are typically the largest structures
by area and transistor count, but also because there is no logical
and temporal masking of soft errors in memories, and they operate
on lower voltage swings [5, 9, 17, 31]. In fact, according to [18],
more than 50% of soft errors happen in memories. Lower levels
of memories (farther from processor) can be relatively easily pro-
tected using ECC (Error Correcting Code) based techniques, but
protecting memories closer to the processor (i.e., L1 caches) results
in high overheads. Previous research [16, 23] has shown that im-
plementing SEC-DED (Singe-Error Correction and Double-Error
Detection) can increase L1 cache access latency by up to 95%,
power consumption by up to 22%, and area cost by up to 18%.
Even if the performance overhead could be hidden, the power and
area overheads cannot. Moreover, due to high degree of process
variations, SEC-DED in caches is increasingly being used in cov-
ering up for manufacturing defects, leaving only parity checking
for many cache blocks. The other option of implementing double-
bit error correction has extremely high overheads [1, 21]. Another
popular approach is to use write-through L1 caches. Write-through
L1 caches ensure at least two copies of the latest data, therefore,
they drastically reduce the vulnerability of data in caches, but it
greatly increases the memory traffic between the processor and the
lower levels of memory. Consequently, they are not desirable for
multi-core and multi-processor systems [12].

This paper explores an orthogonal solution space for protecting
data in caches - through software techniques. We observe that
data is vulnerable to soft errors in the cache only if it will be
read by the processor, and not if it will be overwritten. Basic
code transformations like loop interchange, loop fusion, and data
layout transformations like array interleaving, and array placement
can change the read/write pattern of variables in the cache, and
therefore should have significant effect on the vulnerability of data
in the cache.



Figure 1. Runtime and data cache vulnerability for different loop
orders of matrix multiplication.Observation 1: Variation in vul-
nerability = 96%, Variation in runtime = 16%.Observation 2:
Loop order IJK has low runtime and low vulnerability.Observa-
tion 3: Runtime and vulnerability do not follow the same trend.

In order to demonstrate the effect of code transformations on
vulnerability and to motivate for the need for techniques to ana-
lytically estimate vulnerability, we perform a simple experiment
of loop interchange on the matrix multiplication kernel. The ap-
plication involves three 2D arrays of 32x32 words, and data cache
of 1KB size, 32-byte block, direct-mapped, with write-back, and
write-allocate policies. L1 data cache vulnerability is measured us-
ing cycle-accurate simulation. Figure 1 shows the vulnerability and
runtime results for all six loop orders.

The first observation from the graph is that there is a much
greater variation in vulnerability (96%, from JKI to IKJ) than
in runtime (16%, from KJI to JIK). This shows that there is an
interesting trade-off between vulnerability and runtime – in the
sense that vulnerability can be significantly reduced at low runtime
overhead.

The second observationwe make from this graph is that IJK
loop order has low runtime, and low vulnerability. In fact as com-
pared to the least runtime loop order, JIK, we increase runtime
by less than 1%, while reducing the data-cache vulnerability by
more than 4X. This motivates for the need of finding such de-
sign/execution points, which simultaneously optimize runtime and
vulnerability.

Our final observation from the graph is that the trend of run-
time and vulnerability is not dependent, and cannot be derived from
one another. This is a little counter-intuitive since to a first order of
approximation, increase in runtime should imply an increase in the
vulnerability, since the data spends more time in the cache. How-
ever, vulnerability depends on many other factors including pro-
gram’s data access pattern, cache parameters, and data placement.

Therefore, to be able to find design/execution points which are
good both in terms of runtime and vulnerability, we need a scheme
to estimate the vulnerability of data in caches. Only cycle-accurate
simulation based techniques are known to estimate cache vulner-
ability. While they can certainly be used (e.g. in our motivating
example) to explore some code transformations, and optimize for
vulnerability and runtime, however there are limitations. Cycle-
accurate simulation is very slow (only a few Kilo instructions-per-
second [4]), and the design space for some compiler transforma-
tions can be very large. For example, using cycle-accurate simu-
lation to explore design space for array placement for even a 32
x 32 matrix multiplication will take months on a 2 GHz dual-core
processor system. Thus there is a need for efficient techniques to
estimate cache vulnerability of programs.

To this end, in this paper, we develop analytical techniques to
estimate data vulnerability in caches. In spite of analytic techniques
being efficient, they provide insights which can be used to develop
simpler techniques to approximate; which is another critical limi-
tation of simulation based techniques.

This paper makes several key contributions:

• Demonstrate that code transformations can significantly affect
vulnerability of program loops. Often, it is possible to trade-off
little performance loss for significant vulnerability reduction.

• Develop static analysis to accurately estimate vulnerability of
affine loops. This includes making suitable approximations to
trade-off accuracy of vulnerability estimation to computational
complexity.

• Realizing that vulnerability estimation is complex, we show
how our understanding from analytical vulnerability calcula-
tions can be used much more simply.

2. Related Work
Solutions to mitigate the impact of soft errors are being sought after
at all levels of computer design e.g., careful selection and screen-
ing of materials [2], SOI fabrication technologies [6], increasing the
transistor size, adding passive capacitance, or changing the transis-
tor types with threshold voltage shifts, adding gated resistors [29],
partially protected caches [15], software duplication [28], to triple
modular redundancy [25].

As opposed to hardware techniques, software techniques re-
serve the advantages offlexibility of application, and therefore the
overheads thereof. Indeed, the most important benefit of software
schemes is as a last-minute fix. For example, if it is required to
improve the system reliability after system design, then only soft-
ware techniques may be easily applicable. Most existing software
approaches that attempt to improve reliability and mitigate the ef-
fect of soft errors are based on some form of program duplica-
tion [8, 11, 22, 28], and therefore incur severe power and resource
overhead. This work is fundamentally different from all those pre-
vious software approaches – we study code transformations that
will improve the reliability of application programs – without re-
executing any instruction of the program. Therefore our techniques
can have much less power, performance, and resource overheads.

Caches are one of the most vulnerable microarchitectural com-
ponents in the processor and several techniques have been devel-
oped to reduce failures due to soft errors in caches, e.g. [3, 15,
20, 32], however the effect of code transformations, and in gen-
eral compilers has not been evaluated. While there has been re-
cent work in developing compiler techniques for register file pro-
tection [14, 35], there are no compiler approaches to mitigate the
impact of soft errors in caches. Vulnerability [19] is the measure
of failure rate of caches, and only simulation-based techniques are
known to estimate it [32]. The ability to estimate the vulnerability
for any given code is fundamental to not only driving, but even de-
veloping any compilation technique to optimize for vulnerability,
and in general, simulation based techniques are not usable. This
underscores the need for more efficient techniques to estimate vul-
nerability of data in caches.

This paper proposes a static analysis to estimate program anal-
ysis, and our approach builds upon cache miss analysis [10]. While
there is a more general approach [7] to model reuses in Presburger
arithmetic [26], we use the reuse-vector based approach [34], since
it is much more tractable. We use the Omega library [26] to per-
form polygon union and intersection operations and Polylib [24] to
count the number of points in the polygons containing vulnerable
iterations.



3. Background
3.1 Program Model

As is common with many static loop analysis techniques (e.g.,
[7, 10]), we consider a single loop nest, whose loop bounds and ar-
ray index expressions are defined by affine functions of the enclos-
ing loop indices. We also assume that all the load/store references
inside a nest correspond to only the array references. Scalars can be
analyzed as single element arrays. We use reuse vectors to find the
last access, which further requires that references generate mem-
ory addresses in a uniform manner. In this paper we consider only
perfectly nested loops and assume that the loop body has no con-
ditional statement other than the loop itself. We also assume that
memory accesses are made only through array references and ar-
rays do not overlap (no alias). In practice, however, the constraints
in our program model are not too restrictive. [10] showed by an
empirical study, that most of the runtime-wise important loop nests
in standard benchmark suits, like SpecFP are amenable to these
analysis constraints.

3.2 Architecture Model

The basic architecture modeled here is a uni-processor model with
a single-level, data cache hierarchy. It will be possible to extend
the analysis to multi-level cache hierarchies, but, lower level of
caches are relatively easily and routinely protected through ECC-
based hardware techniques. We assume a direct-mapped cache with
write-allocate policy, implying that if the processor writes to a
cache block, and the cache block is not present in the cache, it is
brought into the cache before writing on it.

3.3 Terminology

A Referenceis a static memory read or write operation in the pro-
gram whereas anaccessrefers to a dynamic instance of a refer-
ence [10]. In the example illustrated in Figure 2 (a),Ra = a[j],
andRb = b[i] are references. ForN = 4, each of them is invoked
16 times, and each invocation is an access.

The iterations of ann-level nested loop can be represented
by ann-dimensional convex polytopeI ⊂ Zn bounded by the
loop bounds, calledIteration Space (outermost loop index being
the first element in the vector). Each point in an iteration space
represents aniteration of the loop nest. Similar to Chatterjee et
al. [7] we augment each iteration with reference ID to represent
access(IDs are given in the order in which they will be accessed in
the loop of interest). We then define theAccess SpaceasA =
{(~j,R) | ~j ∈ I, R ∈ R}, whereR is the set of IDs for all
references. In the example, the access space of referenceRa is
shown by the4 × 4 grid of points in the light square, while that
of Rb is shown by the points in the dark square in Figure 2 (b).

Like iterations, accesses are ordered. An access(~j,R) precedes
another access(~k, S) if (~j,R) is lexicographically less than(~k, S),
or (~j,R) ≺ (~k, S). 1 We use access and iteration interchangeably
when considering only one reference.

The mapping from an iteration to memory address for a refer-
ence is called it’saccess function, AFR : I → Z, and the set of
all possible memory addresses accessed is theMemory Spaceof
the program. Figure 2 (c) shows the memory space of the program,
where both arrays have4 elements. Arraya starts from the origin,
and arrayb starts immediately after it ends. The access function of
referenceRa is AFRa

(i, j) = Sa + j, whereSa = 0 is the start-
ing address of the arraya in the memory. To model caches, we note

1 Note: The lexicographical size of a vector~v, denoted by||~v|| and simply
called size, is defined as the number of points that are lexicographically
less than~v in the iteration space. Greater/smaller/minimum is also in the
lexicographical sense.

Figure 2. Access Space and Access Relations:(a) Ra = a[j] is
a reference, while each instance of it when the program executes
is an access.(b) 16 points in thei × j space denotes the iteration
space, and 2 sets of these points, one for referenceRa and one
for Rb constitute the access space.(c) Accesses(0, 1, Ra) and
(1, 1, Ra) have areuse relationsince they access the same memory
address.(d) Accesses(2, 2, Ra), and (3, 3, Rb) access the same
cache block, therefore they have aconflict relation, while accesses
(1, 1, Ra) and(2, 2, Ra) areunrelatedsince they access different
cache blocks.

that data is organized as blocks in caches. Thecache blockfunc-
tionCB gives the cache block number for a memory address. Thus
CB : Z → Z. The set of block numbers is calledCache Space.
For a direct mapped cache,CB(n) = ( n

CS
)%BS, whereCS is the

cache size, andBS is the block size of the cache. In the example
in Figure 2 (d), the cache has 2 blocks, each of size 2 elements.

Every pair of memory accesses have either areuse relation,
a conflict relation, or areunrelated. Two accesses have areuse
relation if they access the same memory address. In Figure 2,
the access(0, 1, Ra) and (1, 1, Ra) access the same address in
memory (corresponding to the location ofa[1], therefore they have
a reuse relation. Given a memory access,~a = (~j,R), any access
(~k, S) that has reuse relation with it is called areuse accessof ~a,
and~k is called areuse iterationof~j. Of particular interest is the last
reuse access~a, and which is just the latest of reuse accesses among
those that precede~a. Reuse vectors are used to succinctly capture
last reuse access for references [34]. The reuse vector forRa is
~ra = (1, 0), and the reuse vector for referenceRb is ~rb = (0, 1).

Two accesses have aconflict relation if they access differ-
ent memory address, but the same cache block. In Figure 2, ac-
cess(2, 2, Ra) and(3, 3, Rb) access different memory addresses,
a[2], andb[3] respectively, but access the same cache block,CB1.
Therefore accesses(2, 2, Ra) and (3, 3, Rb) conflict with each
other. Finally, if both the memory addresses and the cache blocks
of two accesses are different, then the two accesses areunrelated.
In Figure 2, accesses(1, 0, Ra) and(2, 2, Ra) are unrelated, since
they access different cache blocks.

In the absence of aliasing (e.g., the arrays are non-overlapping,
the references are always accessed by their true names), there is no
reuse between accesses of different references. However, there still
may be conflicts between accesses of different references. Finally,
if cache block size is equal to one element, there is just one reuse
vector per reference to an array.

4. Cache Miss Equations
Any memory access that has a preceding reuse access but has no
conflict access between itself and its last reuse access must result in
a cache hit. Conversely, a conflict access between the two accesses



to the same address will cause a cache miss in a direct-mapped
cache. Thus in order to identify cache hits and misses, we need
to know only two things: i) last reuse access, and ii) whether a
conflicting access exists or not.

Finding conflicts among accesses is easy. We know that two ac-
cesses(~j,R), and(~k, S) conflict iff CB(AFR(j)) = CB(AFS(k)).
Finding the last reuse access is a little tricky. First lets assume that
there is only one reference to an array, and there is only one reuse
vector per reference. Then for the referenceR, we assume that~r is
the reuse vector, then by definition of reuse vectors, if some mem-
ory address is accessed in iteration~j, then it was last accessed in
iteration(~j − ~r), and both access the cache blockCB(AFR(j)).
Now by our definition of cache miss, there will be a miss iff, some
other reference, sayS, accesses the same cache block in iterations
(~j − ~r) through~j. This is captured in the Cache Miss Equation:

CME
S
R(~j,~k, ~r) := (CB(AFR(~j)) = CB(AFS(~k)))

∧ ((~j − ~r) ≺ ~k ≺ ~j) (1)

It states that the referenceR will experience cache miss at iteration
~j along the reuse vector~r, due to another referenceS in iteration
~k, iff they access the same cache block. If the equality is satisfied
for any value of~k, there is a cache miss at iteration~j. Now we can
collect the iterations in which miss occurs:

MI
S
R(~r) = {~j ∈ I | ∃~k ∈ I, CME

S
R(~j,~k, ~r)} (2)

MISR is the set of all iterations~j in which there is a cache miss for
accesses of referenceR due to a conflict with another referenceS,
along the reuse vector~r.

Till now we have only considered misses because of one other
referenceS. If there are multiple references, then there will be a
miss at iteration~j, if there is a conflicting access due to any of the
other references. Therefore,

MIR(~r) =
⋃

S∈R

MI
S
R(~r) (3)

MIR(~r) will be the set of all iterations~j at which a cache miss
occurs due to a conflict withany other reference (except another
reference to the same array) by conflicting with the reuse due to
reuse vector~r.

Now if there are multiple references to the same array, then it
will result in multiple reuse vectors. There can be more than one
reuse vectors, even if the cache block size is more than one element.
In that case, there is spatial reuse [10]. When there are multiple
reuse vectors, then, a cache miss will occur at iteration~j, if there is
a cache miss due to the smallest reuse vector. Noting that if there
is a miss due to smallest reuse vector, then even the longer reuse
vectors must suffer a cache miss, we can simply use the intersection
operator. Therefore,

MIR =
⋂

i

MIR(~ri) =
⋂

i

(

⋃

S∈R

MI
S
R(~ri)

)

(4)

MIR will contain the set of all iterations~j at which a cache miss
occurs for accesses of referenceR due to any reuse vector, and any
other reference. All the misses in the loop is then just a collection
of misses of each reference.

5. Cache Vulnerability and Challenges in
Estimation

Cache vulnerability (CV) is defined as the number of vulnerable
bits in the cache, summed over the duration of a program execution,
measured in byte-cycles. A bit is vulnerable if a soft error in it
can destroyarchitecturally correct execution[19] of the processor.

Any bit that is going to be overwritten is not vulnerable. Any bit
in the data array that is protected with parity bit is not vulnerable
if the cache block is clean and the bit is going to be accessed
while the block remains clean. This is because a clean block can
be simply invalidated if an error is detected in it. We assume, that
all lines are protected by a parity bit, and therefore clean lines are
not vulnerable.

Only cycle-accurate simulation based schemes are known for
cache vulnerability estimation. While simulation based techniques
are time consuming, they can be used in extremely embedded ap-
plications, where neither the program flow, or the data changes.
However, if the data and its size can change, then simulation based
techniques are of little help. In addition, the design space of some
code transformations and data layout optimizations is so large, that
exhaustive simulation is infeasible. Thus, except for in extremely
embedded systems, an efficient technique to estimate data cache
vulnerability is needed to decide on code transformations and data
layout optimizations. An analytical model to estimate cache vulner-
ability offer the additional advantage of insights that we gain, and
can then be utilized either apply these technique more to a different
architecture/data set. In addition, it also provides a systematic and
more informed mechanism to trade-off accuracy for the analysis
time.

We build our cache vulnerability estimation technique similar to
cache miss equations, but estimating cache vulnerability is far more
complicated than cache misses. Cache miss equations estimate the
number of cache misses, which is a subset of the cache accesses
to the same data. In comparison, cache vulnerability is the sum of
“time duration” between two consecutive accesses to the same data,
when the second access is a read, and the data that was accessed
was dirty. The two main complications in vulnerability estimation,
as compared to estimating cache misses are: i) Notion of “time”
between accesses, and ii) More information about the accesses,
e.g., whether the accesses is a read or write, the knowledge of
whether the data was “dirty” at the time of access.

While the second problem is simpler (in theory) and can be
solved by adding more detailed information about references, the
first is a fundamentally challenging problem. To compute cache
misses, fundamentally for every access we only define aBoolean
function AM : A → {0, 1} from the access space indicating
whether there was a miss at the access. The misses in the program
are then just specified as a subset of the access space, i.e.,Miss =
{~a | AM(~a) = 1,~a ∈ A}. While enumerating the elements of
Miss is doubly exponential [7], the number of cache misses can
be found in polynomial time by simply counting the number of
elements in the set [10].

In contrast, to compute cache vulnerability, we need to define an
Integer function AV : A → Z which captures the vulnerability of
the data since it was last accessed. The program vulnerability can
then be computed by adding the vulnerabilities of each access, i.e.,
V ul =

∑

~a∈A AV (~a). One of the main challenges in computing
cache misses is of converting the integer function into sets, such
that the total vulnerability can be computed by finding the number
of elements in a set.

Other practical challenges in vulnerability estimation is that
analysis at iteration granularity is required, as compared to esti-
mating cache misses in which analysis at cache access granularity
suffices. Furthermore, since the dirty information in caches is main-
tained at a block level of granularity, a whole block is considered
vulnerable if any single bit in it is vulnerable. This makes modeling
cache vulnerability at word or byte granularity challenging. This is
because, a word may be vulnerable even if there are no access to it
at all – it can be vulnerable if the blocks containing them are dirty!

Finally, even if we can exactly compute CV by considering all
these factors, such a model is likely to be very complicated (as we



Figure 3. Access Vulnerability is the vulnerability from the last
accumulated from the last access to the same data.Cold Miss:
The vulnerable duration for the first access is 0.Cache Hit: The
vulnerable duration is the length of the smallest reuse vector.Cache
Miss: The vulnerable duration is the distance from the previous
access to the first interfering access.

will see in the paper), so as to jeopardize its practical use. Thus,
an important challenge in vulnerability estimation is also to be
able to make trade-off between modeling complexity and modeling
accuracy, so that we can develop a relatively simple, yet accurate
model of cache vulnerability.

6. Cache Vulnerability Equations
6.1 Access Vulnerability

Unlike cache misses, which is an “event”, vulnerability is computed
as an “interval”, or “duration”. The key idea in computing vulnera-
bility is to associate it with each access. TheAccess Vulnerability,
AV : A → Z of an access~a = (~j,R) is the vulnerability of the da-
tum at the memory locationMFR(~j), since it was last accessed. If
~a is the first access to the data, then the datum is not considered vul-
nerable, orAV (~a) = 0. Similarly, if if this access is a write access,
then it is not considered vulnerable. The reason is, that the datum is
overwritten, and any error in it since the last access is inconsequen-
tial. Also if if the datum was not dirty at the time of access, then the
datum is not considered vulnerable. This is because we assume that
parity protection will detect the error, and the correct value can be
read from the lower levels of memory, which we consider protected
(through use of ECC or any other scheme).

The access vulnerability is non-zero only when the the access is
a “read”, and the datum was dirty at the time of access. However,
the value of vulnerability depends on whether the access is a cache
hit or a miss. If the access is a cache hit, then the datum was
vulnerable for the whole duration from the last access to this access.
Suppose thatR is the only reference to the array, and it has only one
reuse vector~r. Then the datum that is accessed by~a = (~j,R) was
last accessed by~b = ((~j − ~r), R). If the access~a = (~j,R) is
a cache hit, then the datum was vulnerable for the whole duration
from (~j − ~r) through~j, i.e.,AV (~a) = ||~r|| (shown in Figure 3).
However, if the access~a = (~j,R) is a cache miss, then this datum
was replaced by a conflicting access, say~c = (~k, S), at iteration~k.
Therefore, the datum was in the cache only from iteration(~j − ~r)

through~k. After this, from iteration~k through~j, the datum was
in the lower levels of memory, which we consider “protected”.
Therefore,AV (~a) = ||~k − (~j − ~r)||. However, even in the case
when there are only two references, and only a single reuse vector
per reference, the other reference may access and conflict more than
once between accesses~b and~a. In this case, we must consider only
the distance from the last access(~j − ~r) to the first access that
interferes~k∗ = min(~k). All these cases are illustrated in Figure 3.

6.2 Representing Integer Function

A central problem in CV modeling is how to represent the integer
functionAV . Recall thatAM is a Boolean function, which can be
easily represented as a set. Our solution is to augment the vector~j
in (2) with a scalarc, and letc take on all integer values less than
the vulnerabilityl: {(~j, c) | 0 ≤ c < l = ||~k∗|| − ||~p||, · · · }.
Essentially we diversify each~j exactly l times, so that we can
get the total vulnerability simply by counting the elements of the
set. However, still it is not obvious how to express~k∗. Since~k∗ is
the earliest conflict iteration we would like to say~k∗ = min{~k},
or ~k∗ ≤ ~k, ∀~k. However,~k is already qualified with existential
quantifier (∃), and moreover adding universal quantifier (∀) causes
the equation to be only a general Presburger formula and not a
simpler Diophantine equation, greatly increasing the complexity.

We resolve this problem by countingnonvulnerabilityinstead,
i.e., the size of a reuse vector minus the vulnerability. Thus we first
calculatevulnerability capacity, and subtract nonvulnerability from
it to compute real vulnerability.

Access vulnerabilityAVr of referencer with only one reuse
vector~v:

ANV
S
R (~r) = {(~j ∈ I, c) | ∃~k ∈ I,

0 ≤ c < ||~j|| − ||~k||,CMES
R(~j,~k, ~r)} (5)

ANVR(~r) =
⋃

S

ANV
S
R (~r) (6)

AVR = ||~r|| · |I| − |ANVR(~r)| (7)

Working with nonvulnerability also makes it easier to consider
multiple references, as shown in (6). Further, read-hit iterations are
automatically taken care of in this formula; for a hit iteration~j,
(5) returns null since no~k exists, and (7) returns the correct value.
However, cold miss iterations should be excluded, which is not
done by the formula.

6.3 Multiple Reuse Vectors

The formula (5)–(7) has two limitations: incorrect handling of
cold miss iterations, and considering only a single reuse vector.
Those two limitations are closely related and can be solved at
once by extending the concept of reuse vector withdomain. In our
formulation as well as in CME, reuse vectors serve the purpose
of limiting the search space for conflict miss to the previousm
iterations, wherem is given by the size of a reuse vector. Ideally,
m should be given by the last reuse iteration (LRI). However, exact
computation of LRI is intractable in the general case, but most often
it can be found from reuse vectors. A reuse vector~r of referenceR
is derived from

MFR(~j − ~r) = MFR(~j) (8)

which suggests~j − ~r is a possible LRI of~j. In order for that to be
the case, two conditions must be met: i)~r should be valid on~j for
(8), ii) there should be no smaller reuse vector valid on~j. We call
the set of iterations where a reuse vector is valid for (8), thedomain
of the reuse vector. Certainly, domain can be defined for any reuse
vector.

While there can be iterations that are not included in any domain
(they are cold miss iterations), we can easily find the smallest reuse
vector for any iteration that is included in at least one domain.
Given a set of reuse vectors{~ri} sorted in their sizes, i.e.,~r1 ≺
~r2 ≺ · · · , and the corresponding set of domains{Di}, we define
differential domains, {Pi}, as follows.

Pi = Di −Di−1 − · · · − D1 (9)



Differential domainPi is the set of iterations in which~ri is the
smallest reuse vector. Clearly, differential domains are mutually
disjoint, and do not include any cold miss iteration. Now we can
easily extend (5)–(7).

ANV
S
R (~ri,Pi) = {(~j ∈ Pi, c) | ∃~k ∈ I,∃n ∈ Z,

0 ≤ c < ||~j|| − ||~k||,CMES
R(~j,~k, ~ri, n)} (10)

ANVR(~ri,Pi) =
⋃

S

ANV
S
R (~ri,Pi) (11)

AVR =
∑

i

(

||~ri|| · |Pi| − |ANVR(~ri,Pi)|
)

(12)

6.4 Access Type and Cache block State

So far we have considered how to model the effect of cache hit/miss
on CV. Now we consider how to model the effect of read vs.
write difference.AVR in (12) is accurate for read accesses. For
write accesses we need to exclude vulnerability due to hit accesses,
which we callhit-nonvulnerability. Hit-nonvulnerability,HNVR:

HNVR =
∑

i

||~ri|| · |HIR(~ri,Pi)| (13)

HIR(~ri,Pi) = Pi −MIR(~ri) (14)

whereMIR(~vi) is calculated by (2)–(3).
Modeling cache block state is less obvious than access type.

Exact modeling requires looking even beyond LRI (= ~j−~r) for any
write to the same memory block, with the search space expanded up
to the next conflict access. Compared to the formulation developed
so far, which needs to find only one conflict iteration (~k), this
new modeling requires two more (write reuse, the next conflict),
which will greatly impact the complexity. Fortunately, for loops
with uniformly-generated references we have a much simpler rule.
Among uniformly-generated references we can define a total order
from their leading/trailing relationship. For instance, in ai-j loop
nest,A[i][j] trailsA[i+2][j+3] at the distance of[2, 3], which is in
fact one of the reuse vectors ofA[i][j]. We consider that a reference
accesses only clean blocks if it does not follow a write reference.
The other references are considered to access dirty blocks. We
understand that this simple rule is only an approximation and is
not always correct. However, it can be very easily applied and yet
highly accurate if a write reference has no group reuse or the group
reuse vector is small, which is the case in many loops including
matrix multiplication.

6.5 Post-access Vulnerability

Our access vulnerability can account for only the portion of CV
that becomes certain by the last access to each memory block. Af-
ter the last access, there can be no more reuse but only zero or more
conflict accesses. If a conflict access exists, the vulnerable interval
extends to the first conflict access; otherwise, the vulnerable inter-
val extends to the end of the program (provided that the block is
dirty). Thus we need to find out i) the set of iterations in which the
last accesses (per memory block) are made, and ii) the lengths of
vulnerable intervals.

First, given a referenceR, the setP∗ of iterations for last
accesses can be found from theranges, {Ri}, of reuse vectors,
{~ri}. Range is defined similarly to domain except that−~v is re-
placed with+~v in (8). Then it follows from the definition that
P∗ is the set of iterations that are not included in any range, or
P∗ = I − R1 − R2 − · · · . Second, the vulnerable interval is ei-
ther |I| − ||~j|| or ||~k∗|| − ||~j||, whichever is the smaller, where
~k∗ is the earliest of, if any, future conflict iterations. Again we use
nonvulnerability to find this interval. Post-access vulnerability of

Algorithm 1 Find access vulnerability of all references

1: for all R ∈ R that can access dirty cache blocksdo
2: integer (vulnerability ofR): VR ← 0
3: Find all the reuse vectors~ri and their domainsDi

4: for all i in the increasing order of||~ri|| do
5: FindPi from {Di}
6: for all S ∈ R do
7: FindANV S

R (~ri,Pi) /* CME extended for CV */
8: end for
9: integer:ANVR(i)← |∪SANV S

R (~ri,Pi)|
10: VR ← VR + ||~ri|| · |Pi| −ANVR(i)
11: end for
12: if R is a write referencethen
13: ComputeHNVR using CME
14: VR ← VR −HNVR

15: end if
16: end for

referenceR is PVR = |UR| − |PNVR|, whereUR = {(~j ∈

P∗, c) | 0 ≤ c < |I| − ||~j||} andPNVR, the post-access non-
vulnerability, is the union of all the post-access nonvulnerabilities
PNV S

R from different referencesS. Finally, PNV S
R = {(~j ∈

P∗, c) | 0 ≤ c < |I| − ||~k||, ∃~k ∈ I, ∃n ∈ Z,CME’SR(~j,~k, n)},
where CME′ is CME with (~j,R) ≺ (~k, S) substituting for the
original range constraint.

6.6 Implementation and Complexity

Algorithm 1 lists the procedure to compute access vulnerability for
all references in a loop (post-access vulnerability can be computed
similarly). The core of this procedure is writing extended CMEs
(line 7) and counting the integer points in them (line 9). CME, ex-
tended or not, is a set of constraints that specify a polytope pos-
sibly using existential quantifier, and counting integer points in
such a polytope can be done in polynomial time using thebarvi-
nok library [33], which is based onPolyLib [24]. However, further
complication comes from the union operation in between (line 9),
which exists in CME as well. There are several ways to handle
unions. A simple method is to convert unions into intersections (in-
tersections pose no problem) using the inclusion-exclusion prop-
erty (|A ∪B| = |A| + |B| − |A ∩B|), which has unfortunately
an exponential complexity. Another way is to use Pugh’s method of
converting unions into disjoint unions [27]. Counting the number of
integer points is repeated for each reuse vector (line 4) and for each
reference that can access dirty cache blocks (line 1). In our cur-
rent implementation the complexity is dominated by the handling
of union operator, and isO(c ·N ·2|R|), wherec is the average time
for handling unions, andN is the total number of reuse vectors of
references that can access dirty blocks.

7. Experiments
7.1 Vulnerability and Runtime Trade-off

Here we demonstrate through simulation, that interesting trade-off
exists between vulnerability and runtime of applications. At the first
glance, it seems that as the runtime increases, the vulnerability of
the program should also increase, and therefore they are closely
coupled. While this is true in general, there is a very significant
impact of the access pattern on the cache behavior, significantly
changing the amount of vulnerable data present in the cache, and
therefore this direct coupling may not be realized. We show this by
experimenting on several loop transformations. We collected im-
portant loop kernels from the SPEC 2000 and multimedia bench-
mark suites. We modified the SimpleScalar [4] simulator to com-



Figure 4. Runtime vs. Vulnerability: Opportunities to greatly re-
duce vulnerability at little performance cost exist.

pute the data cache vulnerability. The sim-outorder simulator has
been parameterized to model a simple in-order embedded proces-
sor withL1 data cache of size32KB, direct mapped, with32 byte
cache block size, and25 cycle miss penalty. The benchmarks are
compiled with gcc(version 2.95.3) using the ’-O’ option to ensure
that the compiler does reschedule the loops.

Figure 4 plots the variation in the runtime and vulnerability
of theL1 data cache for three popular loop and data transforma-
tions, loop interchange, loop fusion, and array interleaving. For
each transformation, we find the setting that results in the minimum
vulnerability and the setting that results in the maximum vulnera-
bility. The vulnerability variation is then computed as difference in
the vulnerabilities of these configuration divided by the vulnerabil-
ity in the maximum vulnerability setting. The runtime variation is
also computed using the minimum and maximum vulnerability set-
tings. For example, for loop interchange on matrix multiplication,
Figure 1 shows, that the maximum vulnerability loop order isJKI,
and the minimum vulnerability loop order isIKJ . The runtime and
vulnerability variations are computed for these configurations. For
loop fission there are only two setting, either the loops are fused, or
they are separate (fission). Similarly there are two settings for the
array interleaving case, either all the arrays are separate, or all the
arrays in the loop are interleaved.

Next to application names the letter, T or W, in parentheses in-
dicates the direction of variation; vulnerability and runtime move
in the opposite directions (trade-off or T) or in the same direction
(win-win or W). In about half the applications (particularly for loop
interchange), we observe trade-off relationship between vulnerabil-
ity and runtime, typically with much less variation in runtime (46%
vulnerability variation vs. 16% runtime variation, on average). This
means that for some applications we can greatly reduce vulnerabil-
ity while affecting performance very little, reconfirming our mo-
tivation for cost-effective soft error approaches by compilers. Ina
win-win situation, on the other hand, we can get automatic vulner-
ability reduction by choosing performance-optimal loop transfor-
mations.

Clearly the percentage variation in runtime and vulnerability is
sensitive on the relative size of the application data and cache size
and other cache and memory parameters. For example, if the cache
is extremely small, and all accesses miss, then will be little im-
pact of loop orders on either cache misses, or the vulnerability.
Similarly, if the cache is quite large, and there are only capacity
misses, then again there will be no variation in the runtime and
vulnerability of the loops. However, in general, we expect the vari-
ation in vulnerability to be much more magnified than the variation
in the runtime, due to the multiplicative effect of misses in vul-
nerability computation. To exploit vulnerability-runtime trade-offs,
techniques to estimate vulnerability are required, and efficient tech-
niques (like Cache Miss Equations for performance) will be needed
if we want the compiler to make these trade-offs automatically.

Loop Analytical Simulation
order CV(li) #CM ACV CV(li) #CM CV(bc) RT(c)
ikj† 2071 538 1321 2071 538 1.71M 41.2K
kij 5488 788 2874 5488 788 4.67M 45.9K
ijk∗ 6744 418 2669 6744 418 5.07M 39.0K
kji 15163 1746 7377 15163 1746 16.71M 68.5K
jik 33852 598 8816 33852 598 22.59M 42.5K
jki 32341 1544 11732 32341 1544 33.06M 65.4K

Corr. 1.000 1.000 .995 −

Table 1. Vulnerability results for mmult, N=12. Legend - CV:
cache vulnerability, CM: cache miss, ACV: adjusted CV, RT: run-
time, (li): line-iteration, (bc): byte-cycle, and (c): cycle.

7.2 Model Validation

To validate our static analysis as well as to demonstrate its effec-
tiveness and usefulness in program optimization we use the matrix
multiply loop kernel. Our static analysis is performed using an au-
tomated analysis flow, which first derives reuse vectors and their
domains from application description, then generates vulnerabil-
ity equations, and finally calculates cache vulnerability using an
integer-point counting engine. Simulation is performed using the
SimpleScalar cycle-accurate simulator [4]. In all our experiments
we assume that the L1 data cache is write-back and direct-mapped,
with 32-byte line size. The cache size is set to 1∼4 KBytes de-
pending on the application’s memory footprint. Small cache sizes
are chosen not only to model embedded systems but also to induce
frequent cache misses, which will create more variety in the num-
ber of cache misses and cache vulnerability, and thus make it more
challenging to predict the cache behavior.

Loop interchange is a well-known loop optimization that changes
the order of loops in a loop nest. Since it can completely reorder
the memory accesses in a loop, loop interchange can greatly af-
fect cache vulnerability as well as cache misses. As we will see in
our experimental results, there is usually much greater variation in
cache vulnerability than in the number of cache misses. Moreover,
the loop order with the least number of cache misses is not always
the one with the lowest cache vulnerability. This suggests that in
order to address reliability issues, compilers should specifically
target vulnerability reduction rather than just cache miss reduction.

Table 1 compares the cache vulnerability of mmult (matrix mul-
tiplication) computed by our static analysis and by simulation. The
adjusted cache vulnerability (ACV) is calculated using the number
of cache misses (#CM) predicted by the CM equations [10] with
modifications due to domains. The rows are sorted in the increasing
order of simulation CV in byte-cycles (7th column). The last row
lists the correlation coefficient between each column on the analyt-
ical side and the corresponding column on the simulation side, with
ACV corresponding to CV in byte-cycles on the simulation side.

First, we can see that the second column (analytical CV in line-
iterations) exactly matches the fifth column (CV in line-iteration
from simulation). Mmult has nontrivial access pattern in that all
three references have different pairs of spatial and temporal reuse
vectors. Thus this validation result gives some assurance of our CV
equations. In the table, we also observe that the number of cache
misses predicted by the CM equations, with modifications due to
domains, is 100% accurate as compared to simulation. Finally, the
ACV numbers also closely follow the simulation results, with a
very high correlation.

Besides the basic validation results, there are interesting points
to observe from the table. First, the CV variation is much higher
than CM variation or RT (runtime) variation. Cache vulnerability,
as measured in byte-cycles from simulation, varies from 1.71M
to 33.06M, or more than 19 times, whereas the number of cache
misses and runtime vary by mere 3.2 and 1.7 times respectively.



Loop Analytical Simulation
order CV(li) #CM ACV CV(li) #CM CV(bc) RT(c)
ikj† 3622 2173 3055 3622 2333 3.19M 92.3K
ijk∗ 9892 1462 5230 10778 1574 9.25M 79.4K
kij 10221 2653 6520 8988 2773 10.47M 99.1K
kji 26150 3658 13575 26103 3801 35.79M 130.3K
jik 63882 1564 18549 53568 1692 49.15M 82.9K
jki 66581 3438 24793 57827 3565 81.88M 127.1K

Corr. .9978 .9998 .9919 −

Table 2. Vulnerability results for mmult, N=14. Legend - CV:
cache vulnerability, CM: cache miss, ACV: adjusted CV, RT: run-
time, (li): line-iteration, (bc): byte-cycle, and (c): cycle.

Therefore the effect of compiler optimizations for cache vulnera-
bility can be greater than for cache misses. Second, the loop order
for the minimum RT is not the same as the one for the minimum CV.
The original loop order, which is marked with an asterisk in the first
column, has minimum CM and consequently minimum runtime as
well. However, if we choose another loop order, marked with a dag-
ger, the cache vulnerability can be reduced by almost three times
while the runtime is increased by only 5.7% (The minimum-CV
loop-order can be correctly predicted by our analysis as shown in
the table). Please note that the cache vulnerability in byte-cycles
already takes into account the effect of increased runtime; there-
fore, the three times reduction in CV is the real reduction that we
can expect to see in the soft error rate of the data array of L1 data
cache. The above two points strongly suggest the need and scope
of compiler optimizations to reduce cache vulnerability, which has
been neglected in traditional loop optimizations focusing on cache
misses only. Our static analysis can be an important first step to-
ward compiler optimizations for cache reliability.

A potential weakness of our technique, as it relies on reuse
vectors to simplify the equations, is the inaccuracy of reuse vectors
and their domains. The prediction of reuse vectors on the last reuse
access can become less accurate at the boundary of the iteration
space. In our first example whereN = 12, the iteration space
is divided by the cache line size in all its dimensions (a cache
line contains exactly four array elements of double word each). If
we changeN to 14, the boundary effect starts to appear, which
is shown in Table 7.2. In the table we notice that even the CM
equations start to disagree with simulation although the overall
correlation is very high. Comparing Columns 2 and 5 (CV in line-
iterations), our CV equations tend to be more accurate in low
CV region while it amplifies in high CV region. Our CV analysis
sometimes loses on the details but it accurately captures the overall
trend. Most importantly, the ordering in the adjusted CV exactly
matches the ordering in the simulation CV in byte-cycles. Again in
this example, we observe the same pattern that the loop order for
minimum CM is different from that of minimum CV, and there is
much more to gain in terms of cache vulnerability if we can make
a little trade-off in terms of runtime.

7.3 Analytical Optimization Case Study

Many loop transformations significantly affect cache vulnerability,
often much more than cache misses. While our cache vulnerability
equations can be used to accurately compute the total cache vulner-
ability of a loop nest, and thus can guide compiler optimizations,
evaluating the equations is not always easy due to the limitations
of back-end tools. Here we showcase alternative use cases of our
cache vulnerability equations, using data placement.

7.3.1 Array Placement

In loops, array placement can dramatically affect the number of
cache misses and cache vulnerability. There are two ways to change

for ( i = 0 ; i < N ; i++ )
for ( j = 0 ; j < N ; j++ ) {

Aj,i+1 = f1(Pj,i+1, Pj,i, Uj,i+1)
Bj+1,i = f2(Pj+1,i, Pj,i, Vj+1,i)
Cj+1,i+1 = f3(Vj+1,i+1, Vj+1,i, Uj+1,i+1,

Uj,i+1, Pj,i, Pj,i+1, Pj+1,i+1, Pj+1,i)
Dj,i = f4(Pj,i, Uj,i+1, Uj,i, Vj+1,i, Vj,i)
}

Figure 5. Calc1 loop from swim (after loop interchange).

array placement. Intra-variable padding increases row sizes to re-
duce cache conflicts (both self and cross), which increases memory
footprint. Inter-variable padding, or array placement adds unused
space between arrays, or changes the base addresses of arrays,to
reduce cache conflicts between different arrays. We use array place-
ment to demonstrate the effectiveness of analytical optimization on
cache vulnerability.

Figure 5 shows an abstract version of a loop nest from swim
after loop interchange (detail is omitted to avoid copyright in-
fringement). Hereafter we refer to the loop-interchanged loop as
the original loop. This loop involves 7 arrays and many more ref-
erences with very complex access patterns. Exhaustive exploration
of array placement parameters for such a loop is prohibitive. For
a very small 1KB cache, and even after restricting the base ad-
dresses to the cache line boundary (=32B), the design space has
still (25)6 = 230 combinations. Instead, we can quickly find opti-
mal points exploiting the intuition provided by our CV equations.

Our CV equation has two parts. It first computes the total vul-
nerabilitycapacityand then subtracts nonvulnerability from it. Of-
ten the total vulnerability capacity is not affected by base addresses.
Therefore our goal is to maximize nonvulnerability by changing
base addresses. Nonvulnerability is proportional to the distance be-
tween the current iteration and the earliest conflict iteration after
the previous reuse. In other words, maximum nonvulnerability oc-
curs if a dirty cache line is evicted immediately after it is accessed,
which agrees with the intuition. However, since frequent cache con-
flict will increase runtime, which negatively impacts cache vulner-
ability, our strategy is to evict as soon as possible those dirty cache
lines that willnotbe accessed for a long time.

In our original loop in Figure 5, dirty cache lines are generated
only by the four LHS (left-hand side) references. We can evict
those lines by creating conflicts between each of them and any
of the ensuing accesses. Let us use write accesses for that, since
write misses generally incur less penalty. Then we have a chain of
conflicts like this:Aj,i+1 → Bj+1,i → Cj+1,i+1 → Dj,i. The
last referenceDj,i can be made to have conflict with one of the
read references in the next iteration.

To derive formulas let us assume that all the arrays are initially
placed at offset zero modulo the cache size, and that we can inde-
pendently control the offsetµX of each arrayX. Note that this can
be implemented very easily without losing optimality. Let us also
assumeµA = 0. Then the above chain of conflicts gives the offsets
of the other three arrays. For instance, betweenA andB:

Addr(Aj,i+1) ≡ Addr(Bj+1,i)

⇔ µA + jM + (i+ 1) ≡ µB + (j + 1)M + i

where≡ is equality under modulo on the cache size andM is the
size of each row (assuming every array has the same row size).

For the last reference, we must consider the next iteration, which
can be either the nextj-iteration or the nexti-iteration. For each
case we can set up a different array to have conflict withDj,i. We
explore three choices.



Figure 6. Cache vulnerability and runtime reduction through array
placement.

Loop CV (bc) %reduc. RT (c) %incr.
Original (loop-interchanged) 14.08M − 47.7K −

Simple choice 2.69M 80.9% 53.6K 12.4%
Pareto-optimal 1 1.36M 90.3% 45.8K –3.9%
Pareto-optimal 2 3.92M 72.1% 40.0K –16.2%

Table 3. Array placement optimization results for swim

(1) Simple choice: UsingUj,i+1 andPj,i

Addr(Dj,i) ≡ Addr(Uj,i+1)|j=j+1

⇔ µD + jM + i ≡ µU + (j + 1)M + (i+ 1)

and

Addr(Dj,i)|j=N−1 ≡ Addr(Pj,i)|i=i+1,j=0

⇔ µD + (N − 1)M + i ≡ µP + (i+ 2)

Figure 6 plots CV and runtime results from simulation for
random offsets (5000 instances). It also shows the CV and
runtime for the original loop, which is about the center of the
distribution. For parameters we useN = 14 andM = 16, and
the cache size is set to 1KB. Compared to the original loop, our
simple choice can reduce CV by more than 80%, which further
validates our static vulnerability model. However the runtime is
significantly increased. Although it is not surprising given that
we have tried only to reduce CV, it suggests that cache misses
should be considered in order to get truly optimal parameters.

(2) Pareto-optimal: To contain the runtime increase problem we
resort to traditional CM reduction methods such as [10]. The
key idea is to make the read references conflict as little as
possible. Close examination of the offsets determined by the
simple choice reveals thatµU = µC andµV = µA, which
creates unnecessary conflicts and increases runtime. The latter
is because we did not set any constraint onµV , which defaulted
to zero, and the former is by chance. To improve the situation
we set up a different referenceVj+1,i to have conflict with
Dj,i along thej-loop, and used eitherPj,i+1 or Pj+1,i to have
conflict along thei-loop, which gives two sets of parameters.
Then the remaining free arrayU is assigned an offset that is
farthest away from all the other arrays. The simulation results
for these sets of parameters are shown in Figure 6 (marked as
Optimal). Both points are pareto-optimal, and reduces CV by
up to 90% or runtime by up to 16% compared to the original
loop. Table 3 summarizes the exploration results.

8. Summary
To combat the threat of soft errors, techniques have been devel-
oped at all abstractions of processor design. Software schemes are
particularly useful since they provide flexibility of application and
therefore overheads, and can be applied in current or even previous
generation processors, and most importantly, are irreplaceable as a
last-minute fix. Caches are the most “vulnerable” component in the
processor, and traditional ECC-based techniques are getting used
up in manufacturing errors, and effectively only parity protection
remains. While there exist some microarchitectural techniques to
reduce cache vulnerability, there are no compiler based techniques.
This is chiefly owing to the lack of efficient schemes to estimate
cache vulnerability – for which only simulation based techniques
are known. This paper develops analytical techniques to efficiently
and statically estimate cache vulnerability of programs, opening the
doors for compiler techniques to trade-off power and performance
for reliability. Our experiments demonstrate that often it is possi-
ble to trade-off a little performance for a significant vulnerability
reduction by simple code transformations. In addition, we demon-
strate how the insights from vulnerability calculations can be used
to innovate simple practical schemes to reduce program vulnerabil-
ities.
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