
Power-Accuracy Tradeoffs in Human Activity

Transition Detection

Jeffrey Boyd, Hari Sundaram, Aviral Shrivastava

 School of Computing, Informatics, and Decision Systems Engineering

 Arizona State University

Tempe, Arizona, USA

{Jeffrey.Boyd, Hari.Sundaram, Aviral.Shrivastava}@asu.edu

Abstract — Wearable, mobile computing platforms are

envisioned to be used in out-patient monitoring and care. These

systems continuously perform signal filtering, transformations,

and classification, which are quite compute intensive, and quickly

drain the system energy. The design space of these human

activity sensors is large and includes the choice of sampling

frequency, feature detection algorithm, length of the window of

transition detection etc., and all these choices fundamentally

trade-off power/performance for accuracy of detection. In this

work, we explore this design space, and make several interesting

conclusions that can be used as rules of thumb for quick, yet

power-efficient designs of such systems. For instance, we find that

the x-axis of our signal, which was oriented to be parallel to the

forearm, is the most important signal to be monitored, for our set

of hand activities. Our experimental results show that by

carefully choosing system design parameters, there is

considerable (5X) scope of improving the performance/power of

the system, for minimal (5%) loss in accuracy.

I. INTRODUCTION

Human activity detection is becoming increasingly
important, not only for high-end athletics training, interactive
and immersive games and virtual reality environments, but also
in healthcare, both for in-patient training and out-patient
monitoring and support. For example, a stroke survivor’s
physical therapist wants to know if their patient is using their
affected arm during the course of the day, how they are using
it, (e.g., reaching out or writing), and how many times.

Human activity detection is typically done by attaching
position or acceleration sensors on the affected part of the
body, and then logging and analyzing the sensor outputs. The
analysis consists of several signal filtering, signal
transformations, and pattern classification steps, that are quite
computationally intensive. In order to provide maximum
freedom of movement for the patient, and achieve maximum
monitoring, all this computation must be performed on a
battery operated mobile device, which the patient has to carry
all the time. Given the limited storage capacity and the critical
need to minimize the battery weight to carry, it is desirable to
implement this patient activity monitoring system in a power-
efficient manner. This paper explores the power/performance
and accuracy tradeoffs in the design of a human activity
detection system.

Our hand-movement monitoring system comprises of a

wrist mounted 3-axis accelerometer, and we intend to monitor
a set of patient activities, including sitting, standing, walking,
reaching forward (as if one wanted to pick up an object in front
of them) and lifting the hand (as if to eat). As opposed to trying
to classify sensor output signals into human activity at each
moment, we detect the change in the pattern of the signal rather
than a change in the signal itself. This scheme is called Activity
Transition Detection, and has been shown to be more power-
efficient. Fundamentally, this scheme has two main steps,
feature selection and transition detection, and implementation
of an activity transition detection system requires making
several choices, including sampling frequency, feature
detection algorithm, dimensionality of feature, and width of the
window of transition detection etc. The choice of each of the
parameters and algorithms essentially trades-off power and
performance for accuracy.

While some of the key design parameters, e.g., sampling
frequency have been explored by previous researchers [7],
previous works have not performed a multi-parameter
exploration that we present in this work. Our experimental
results underline the importance of design space exploration for
designing an accurate, yet power-efficient activity transition
detection system. By carefully selecting design parameters and
algorithms, and giving a leeway of even 5% on accuracy, we
can improve the power/performance by up to 5X. From the
results of this holistic design space exploration, we cull out
several rules of thumb for quick, yet power-efficient design of
such systems. For example, we observe that i) significant
power/performance can be gained at little loss of accuracy by
reducing the dimensionality of feature detection, ii) the x-axis
of the output of 3-axis accelerometer, which was oriented to be
parallel to the forearm, is the most important signal to be
monitored, for our set of hand activities. This is, even though
we differentiate between sitting and standing as activities.

 The rest of the paper is organized as follows: We start with
discussing previous work (Section 2), and then explain our
research problem in more detail (Section 3). Section 4 focuses
on the design space of our system and Section 5 explains the
transition detection method further. Section 6 defines the
evaluation metrics for transition detection method. Section 7
discusses experiments results, its analysis and insights gained.
Finally, we conclude in Section 8.

This work is funded in part by Science Foundation Arizona (SFAz) and

the NSF IGERT (NSF DGE-05-04647).

II. RELATED WORK

Stäger, et al. [7] presented an empirical design
methodology to explore the trade-offs between power and
accuracy. Their work used a wrist-mounted device with
accelerometers and a microphone to capture data of people
using kitchen appliances. They took a low-power approach
from the beginning, investigating and showing how sampling
frequency and feature selection change their system’s power
consumption. Their work focused on activities where the user
interacted with sound-making kitchen appliances whereas the
method we describe in this paper does not depend on sound.

 Huynh, et al. [2] also use a probabilistic model and sliding
windows to detect activity patterns. Though they don’t
specifically try to detect transitions between activities, they
mention their system is capable of detecting transitions. Also,
they do not take power into their design considerations.

Krause, et al. [4] used the accelerometers on the eWatch
system to classify five activities: walking, running, standing,
sitting and climbing or descending stairs. They showed a 4x
increase in the lifetime of their wrist-mounted system, without
significantly reducing prediction accuracy, by reducing the
sampling frequency and exploring different schedules to run
their classifier. They refer to these schedules as selective
sampling strategies.

French, et al. [1] expanded on the work of [4] by collecting
more data and specifically evaluating different selective
sampling strategies. The strategies they tested were a baseline
uniform sampling strategy, one that samples over the
distribution of duration times of activities, and one that samples
based on the probability of a transition occurring. Our work in
activity transition detection is an alternative to the selective
sampling strategies [1] and [4] used. Whereas their methods
rely on a priori knowledge about the duration of activities and
probabilities of transitions, our methods assume no prior
knowledge. Further, we explore a much larger design space
beyond just sampling rate.

III. TRANSITION DETECTION OUTLINE

Our goal is develop methods of sensing on small, wearable
computing platforms that minimizes power consumption
without sacrificing too much performance. To accomplish this
we need to first define a set of activities we are interested in,
determine what sensors can sense these activities, develop

some method to accomplish our stated task of detecting activity
transitions, and then systematically explore the independent
variables in the system until arriving at a combination that
satisfies some design constraint. Fig. 1 outlines the general
procedure of our transition detection system. Sensors create a
signal representation of a patient’s activity. Features are
calculated from this signal. The temporal resolution, meaning
the sampling frequency and other time-related constructs, affect
how the representation of the signal and features, which are
then used by our transition detection algorithm.

We choose a set of basic activities that physical therapist of
stroke survivor wants to monitor. The set of activities are,
sitting, standing, walking, reaching forward (as if one wanted
to pick up an object in front of them) and lifting the hand (as if
to eat). These activities and gestures are the building blocks to
other, more complex activities and gestures, such as the
activities of daily living [3], a widely used list of common
activities used to assess the function of the elderly or infirm.

We propose to detect transitions using a sliding window
technique that compares two blocks of time and computes the
likelihood that the activity is different between those two
blocks. Several samples are grouped into observations, from
which features are calculated. These observations are then
grouped into “windows,” or blocks of time the algorithm looks
at to detect transitions. We next discuss the design space
followed by a more thorough description of the transition
detection algorithm.

IV. DESIGN SPACE

In the following sections we outline the parameters of our
design space in three broad categories: sensors, features, and
temporal resolution, meaning the various time-based controls
(sampling frequency, window duration, etc.) we have in the
system. We acknowledge they represent just a few options
compared to what is possible

A. Sensors

To sense the activities we are interested in we chose to use
a wrist-mounted triaxial accelerometer. Accelerometers offer
several advantages, beginning with the fact that they’re small,
lightweight, and inexpensive. Accelerometers are also widely
used in the literature on wearable computing systems and
human activity recognition [9]. We also investigated using
gyroscopes and magnetometers. We found the magnetometers
in our test system to be too noisy for any practical use and
preliminary tests that included gyroscopes yielded poor results.

We used a triaxial accelerometer and experimented with all
seven possible combinations of signals, {x-axis; y-axis; z-axis;
x and y axes; x and z axes; y and z axes; x, y, and z axes}.

B. Features

Features are some aspect or quantitative measurement of
the signal. They can be simple time-domain measurements
such as maximum, minimum, variance, and mean, or
frequency-domain based such as the Fast Fourier Transform
(FFT) and the Discrete Cosine Transformation (DCT). Other
projects have had success using wavelet transformations [5],
[6]. Each feature has its own computational complexity,
summarized in Table 1. Computational complexity of feature

Activity

Sensors

Feature

Transition Detection

Design
Space

Temporal
Resolution

Figure 1. System Flow Chart. The design space in low-power

activity transition detections focuses on the sensors that detect

activities, the features extracted from these signals, and the temporal

resolution or time-dependent properties of the system.

extraction is important because it is directly related to power
consumption [8].

TABLE 1. FEATURES AND COMPUTATIONAL COMPLEXITY. THE

COMPUTATIONAL COMPLEXITY AND DIMENSION OF EACH FEATURE AFFECTS

POWER CONSUMPTION.

Feature Computational Complexity

Max O(N)

Mean O(N)

Min O(N)

Variance O(N)

FFT O(N log N)

DCT O(N log N)

Haar Wavelet O(N)

Daubechies Wavelet O(N)

C. Temporal Resolution

The third variable is sampling frequency. We chose 100Hz
as a baseline. We chose this value because the fastest hand
movements are about 5 Hz, and a good rule-of-thumb is to
oversample about 20x when using a noisy sensor. Realizing
there are low-power advantages to sampling at lower
frequencies and encouraged by the good results of Krause et al.
[4], who sampled at much lower frequencies, we also
experimented sampling at 50, 20, and 10 Hz. Lower sampling
frequencies mean fewer samples to process, faster runtimes,
and increased power savings.

The fourth variable is the size of the observation described
in Sections 3 and 5. We call this observation a frame and define
it as the number of samples that the above features are
extracted from. In our study we used frame sizes of 10 and 20
samples.

Last we have the length or duration of the sliding window,
measured in seconds. The length of the window affects the
number of observations used to calculate the likelihood
function, as well as the total number of comparisons. In our
study we used window lengths of 6, 8, 10, 12, 14, 16, 18, and
20 seconds.

As we’ve defined them, there are 4480 combinations of
these variables in our design space.

V. TRANSITION DETECTION

Our transition detection method uses a measurement of how
different two sections of the signal are within a bounded
window of time. We split the window in half, creating left and

right window panes, as seen in Fig. 2. We want to get some
measure of how different the panes are from each other and the
entire window, so for each of these panes and for the entire
window itself, we calculate a log-likelihood function for each
signal we are analyzing:

 ()∑
=

=

N

j

jN xpxxxL

1

21),|(ln),...,(ΛΛΛΛµµµµ (1)

where x1, …, xN denote the N observations from the left, right

or the whole window, µµµµ and ΛΛΛΛ are the mean feature vector and
covariance matrix in the Gaussian model. The probability p is
derived from the multivariate Gaussian probability distribution
function. Each observation is a vector of features extracted
from each signal.

Once these likelihoods have been calculated for each signal,
we combine them in a log-likelihood ratio test, seen in
Equation 2.

)
2

,...,1(),...,1
2

(

)
2

,...,1
2

(

ff

ff

i N
iiLi

N
iL

N
i

N
iL

RT

++++−

++−

= (2)

In this equation, the variable i represents the frame immediately
left of the center line in Fig. 2 labeled “Possible Transition”
and Nf is the total number of frames per window. The ratio RT
will be close to one when no transition is present and greater
than one when a transition is present. It peaks where the
probability of a transition is greatest.

VI. EVALUATION METRICS

To evaluate our transition detection system, tested each
combination of variables on their accuracy and runtime. The
following subsections describe our accuracy measurements and
our model for computational complexity, which directly affects
runtime.

A. Accuracy

Our accuracy measurements are based on hits, misses and
false positives. Hits are the number of times the log-likelihood
ratio test correctly detected a transition, false positives are
when it detected a transition when none was there, and misses
are the number of times it did not detect a transition. We then
combine these into precision, and recall, where

Positives False Hits

Hits
Precision

+
= , (3)

and

Misses Hits

Hits
Recall

+
= . (4)

A common measure that combines both is the F-Score:

recallprecision

recallprecision
F

+

⋅⋅
=

2
. (5)

Figure 2. Our sliding window technique. The window is divided into

left and right panes and compared using a log-likelihood ratio test.

The window panes are made of several frames, which are comprised

of several samples (shown in dashed lines). Features are calculated

per frame and can be a scalar or a vector.

Window Size (Sw)

Possible Transition

Frame Size (Sf)

Window Pane

F is 1 when both precision and recall are 1. We also a
define Reverse F-Score (RF) measure:

 FRF −=1 (6)

which reverses the F-Score so that 1 is bad and 0 is good. We
use RF to more easily visualize accuracy vs. runtime.

B. Computational Complexity

In this work, we estimate power as just computation
complexity metric, since to a first order, power consumption is
very strongly correlated to computational complexity. This is
because computational complexity directly affects runtime and
runtimes affect power consumption. We’ve developed a model
for computational complexity based on the variables in our
system, which we summarize in Table 2.

TABLE 2. DEFINITION OF MODEL VARIABLES. THESE ARE SOME OF THE

PARAMETERS IN OUR DESIGN SPACE. D IS A SCALAR FOR MEAN, MIN, MAX, AND

VARIANCE, BUT A VECTOR FOR DCT, FFT AND THE TWO WAVELET

TRANSFORMATIONS.

Variable Description

Fs sampling frequency (samples/sec)

Sw window size (sec/window)

Sf frame size (samples/frame)

D dimension of the feature

The computational complexity (C) of our system can be
broken up into two parts: feature extraction (CFE), and the log-
likelihood ratio test (CRT). We define:

 C = CFE + CRT (7)

If this were running in realtime, or in other words, the
steady-state case, then the best way to look at it is to consider
the complexity per comparison. For feature extraction:

)(fcFE SFC = (8)

where Fc is the complexity of the chosen feature. For
example, N for max/min/mean and N·log(N) for FFT and DCT.
This equation assumes that only one signal and one feature are
being analyzed. The second part of complexity is:

 322
DD

S

SF
C

f

ws
RT +⋅













 ⋅⋅
= (9)

where












 ⋅⋅

f

ws

S

SF2
is twice the number of frames per window.

Multiplying by two is necessary because in each comparison
the window is essentially processed twice by looking at the left
and right panes and the whole window. The square and cube
powers in (9) are there because of the calculation of the
covariance matrix and the inverse of the covariance matrix in
the multivariate Gaussian probability distribution function. See
the Appendix for more details on the derivation of Equation 9.

VII. EXPERIMENTS

For this experiment we used a SparkFun 6-DOF IMU v3 as
seen in Fig. 3. The SparkFun device features a Freescale

MMA7260Q 3-axis accelerometer as well as gyroscopes and
magnetometers, though only the accelerometers were used in
this experiment. This device uses a LPC2138 ARM7
microcontroller and Bluetooth to communicate with a
computer. The SparkFun IMU was rigidly mounted to a
subject’s right wrist while they performed sequence of
activities. The device was mounted such that the
accelerometer’s x-axis was parallel to the forearm, pointing
toward the elbow, the y-axis perpendicular to the forearm,
pointing in the same direction as the thumb when it is
outstretched, and the z-axis pointing into the hand from the
back of the hand to the palm. All data was sampled at 100Hz
and processing of the data was done off-line using Matlab.

A. Power/Performance and Accuracy Trade-offs

We estimate the accuracy and measure the performance of
each sequence of activities, for each design alternative.
Accuracy is measured as Reverse F-Score (RF), while
performance is computed as average runtime per activity
sequence. We define runtime in this way because we want to
compare the runtimes across all activity sequences, which are
of different durations.

Fig. 4 plots the performance and accuracy of all design
alternatives. Out of the total 4480 combinations, only 15 are
pareto-optimal, and are connected by a curve, and marked by
circles on the graph. The pareto-optimal points are also
summarized in Table 3. Each pareto-optimal design point
represents a design alternative for which there is no better
performing design alternative for a given F-Score. These are
the most interesting alternatives in the design space.

A couple of interesting observations can be made about
these Pareto optimal design point. The difference in accuracy
between the top two rows in Table 3 is only 5%, but the top
combination runs ~5.6x longer than the second, meaning it’s
computational complexity and power consumption is much
greater. Thus, significant power savings can be achieved if
small sacrifices in accuracy are tolerable.

Figure 3. The SparkFun 6-DOF IMU v3. This device features a 3-axis

accelerometer, 3-axis gyroscope, 2-axis magnetometer and Bluetooth

connectivity. In our tests, this device was attached to the right wrist.

x-axis

y-axis

z-axis

The eight pareto-optimal points on the lower right side of Fig.
4, all have a sampling frequency of 100Hz, while the seven on
the top-middle are all sampled at 20Hz. Interestingly there is
not much gain in accuracy when sampling at 50Hz (“+”
marked points) as compared to 20 Hz (points marked by “x”),
while there is significant improvement in performance. It
appears the 10Hz combinations ran very fast, but simply did
not have enough data to identify the transitions.

All Pareto points, except the one with the lowest RF, have a
frame size of 20 samples per frame. The fact that, on average,
the 20 samples per frame combinations ran faster the 10
samples per frame combinations was predicted by our model
for computational complexity in the equations described in
Section 6.2. Frame size is in the denominator in Equation 9;
therefore dividing by a larger frame size reduces the overall
complexity. This also makes intuitive sense because with a
larger frame size there are fewer frames, or observations, per
window and features are calculated per frame.

Note also that 12 of the 15 Pareto points use the x-axis,
which represents the line parallel to the forearm, from wrist to
elbow. The fact that so many of the Pareto optimal points use
this axis indicates that it is important for detecting the kinds of
activities and transitions between the activities we tested.

B. Low-Dimensionality Feature-Detection is better

Another interesting conclusion, we can draw from the
Pareto points is the fact that most of them, all except the one
with the lowest RF, use simple features such as mean,
minimum, maximum, and variance. These features performed
very fast compared to the more complex features such as DCT,
FFT, and the wavelet transformations. Even though both the
wavelet transformations are O(N), just like the simple features,
the wavelets are represented by a vector of coefficients, rather
than a scalar, which the simple features use. This is a key
difference in the runtime between the two groups.

Fig. 5 shows the Pareto optimal points for each feature and
the best overall. The best overall curve, shown in red, is the
same as the curve shown in Fig. 4. Notice how the simple
feature group and the more complex feature group have similar

curves within their group. The increase in runtime in the
complex feature group is attributable to the increased feature
dimension. Equation 9 shows that computational complexity is
proportional to the square and cube of the dimension of the
feature. These two elements dominate the equation when the
dimension of the feature is high. Fig. 6 shows how the number
of frames per window and the dimension of the feature affect

computational complexity. It shows the graph of 32
DDN f +⋅ ,

Figure 4. System Design Space. The red circles highlight the Pareto

optimal points, which are dominated by the 100Hz and 20Hz

sampling frequencies. All combinations with a sampling frequency

of 10Hz had an RF of 1, meaning they did not detect any transitions.

Note the x-axis is log scale and the y-axis is linear.

Figure 5. The Pareto optimal points for each feature are shown. This

figure shows how feature computational complexity affects system

runtime. FFT, DCT, and the wavelet approximations are vectors, but

max, min, mean and variance are scalars.

TABLE 3: PARETO OPTIMAL POINTS SUMMARY. THIS TABLE

SUMMARIZES THE SYSTEM PARAMETERS OF THE HIGHLIGHTED POINTS IN

FIGURE 4. NOTE SIMILARITIES IN SIGNAL, FEATURE, FREQUENCY, AND

FRAME SIZE. THE TWO COMBINATIONS IN BOLD REPRESENT THE TWO

POINTS IN THE “KNEE” OF THE SOLID RED LINES IN FIGURES 4 AND 5.

RF
Norm.

Time

Signal

(axis)
Feature

Freq.

(Hz)
Frame

Size
Window

Size (s)

0.036 0.2172 x DCT 100 10 16

0.086 0.0388 y min 100 20 18

0.112 0.0359 x mean 100 20 16

0.146 0.0331 y max 100 20 14

0.170 0.0330 x min 100 20 14

0.196 0.0216 x max 100 20 8

0.270 0.0176 x min 100 20 6

0.340 0.0172 x max 100 20 6

0.729 0.0059 x variance 20 20 10

0.754 0.0056 x variance 20 20 8

0.775 0.0041 x min 20 20 10

0.829 0.0037 x mean 20 20 8

0.878 0.0037 z min 20 20 6

0.882 0.0032 x mean 20 20 6

0.938 0.0029 x max 20 20 6

where Nf is the number of frames per window and D is the
feature dimension. In our experiments, the feature dimension
ranges in size from 1 to 20, and the number of frames per
window ranges from 3 to 200. Low feature dimensions have
little effect on complexity as the number of frames per window
increases. However, a high feature dimension has a significant
impact on computational complexity as the number of frames
per window increases.

VIII. CONCLUSION

We have presented a low power approach to detecting
activity transitions. The entire framework has several variables
and has a corresponding large design space. We have shown
that a few combinations of these variables have been effective
in detecting transitions in our test cases. We have shown that
there is a power and accuracy trade-off when selecting
combinations of variables, namely some combinations are very
accurate, but they are also computationally complex and use
more power. Some combinations sacrifice accuracy only
marginally but are much less computationally complex and
therefore more power efficient. Previous work in activity
recognition has focused on decreasing the sampling frequency
to conserve power. Here we have shown that the feature, or
more specifically the dimension of the feature, extracted from
the signal has a significant impact on the computational
complexity and power consumption of the system.

Future work will need to show whether these combinations
and this framework for detecting activity transitions scales to
activities beyond what we’ve tested. It may be that the simple
features worked well for the small set of activities we tested
because their signal signatures were sufficiently distinct from
one another. More complex features may be necessary as the
number of activities and transitions increases. Also, future
work will test whether the same combination of variables that
detect transitions can also correctly classify what activity is

taking place. The method presented here only detects that a
transition occurs, not what the person has transitioned from or
to. It may be the case that a low-power activity detection
system uses simple features on one signal to detect a transition,
but then needs to use a more complex feature on multiple
signals to classify the activity.

REFERENCES

[1] French, B., Siewiorek, D., Smailagic, A., Deisher, M. Selective
Sampling Strategies to Conserver Power in Context Aware Devices. In
Proceedings of 11th IEEE International Symposium on Wearable
Computers (Boston, MA, USA, October 11-13, 2007). ISWC ’07. IEEE
Computer Society, Los Alamitos, CA, 77-80.

[2] Huynh, T., Fritz, M., and Schiele, B. Discovery of activity patterns using
topic models. In Proceedings of UbiComp 2008, ACM Press (2008), 10-
19.

[3] Katz, S., Ford, A.B., Moskowitz, R.W., Jackson, B.A., Jaffe, M.W.,
Studies of Illness in the Aged. The Index of ADL: A Standardized
Measure of Biological and Psychosocial Function. Journal of the
American Medical Association, 1963 Sep 21, 185:914-919.

[4] Krause, A., Ihmig, M., Rankin, E., Leong, D., Gupta, S., Siewiorek, D.,
Smailagic, A., Deisher, M., Sengupta U. Trading off Prediction
Accuracy and Power Consumption for Context-Aware Wearable
Computing. In Proceedings of the Ninth IEEE International Symposium
on Wearable Computers (Osaka, Japan, October 18-21, 2005). ISWC
’05. IEEE Computer Society, Los Alamitos, CA, 20-26.

[5] Nyan , M.N., Tay, F.E.H., Seah, K.H.W, Sitoh, Y.Y., Classification of
gait patterns in the time-frequency domain, Journal of Biomechanics,
Volume 39, Issue 14, 2006, Pages 2647-2656.

[6] Sekine, M., Tamura T., Togawa, T., Fukui, Y., Classification of waist-
acceleration signals in a continuous walking record, Medical
Engineering & Physics, Volume 22, Issue 4, May 2000, Pages 285-291.

[7] Stäger, M., Lukowicz, P., Tröster, G. Power and accuracy trade-offs in
sound-based context recognition systems. Pervasive and Mobile
Computing 3 (2007), 300-327.

[8] K. Zotos, A. Litke, A. Chatzigeorgiou, S. Nikolaidis, G. Stephanides,
Energy Complexity of Software in Embedded Systems, IASTED
International Conference on Automation, Control and Applications
(ACIT-ACA 2005), Novosibirsk, Russia, June 20-24, 2005.

[9] L. Bao and S. S. Intille, Activity recognition from user-annotated
acceleration data, in Proc. PERVASIVE 2004, vol. LNCS 3001, A.
Ferscha and F. Mattern, Eds., Berlin, Heidelberg, Germany, 2004, 1–17.

IX. APPENDIX

This appendix describes the derivation of the ratio test’s
complexity, seen in Equation 9. Let D be the dimensionality of
the feature we are analyzing. Let Nf be the number of frames
per window. Calculation of the probability p in Equation 1

involves calculating the mean feature vector (µµµµ) and

covariance matrix (ΛΛΛΛ) across the entire window. The

complexity of µµµµ is O(D·Nf), because features are calculated per
frame and each dimension of the feature is averaged. The

complexity of ΛΛΛΛ is O(D
2
·Nf). The calculation of p also

involves calculating ΛΛΛΛ
-1

, which has complexity O(D
3
) since

the best known algorithms to calculate the inverse of a matrix
are cubic. The complexity for calculating p can now be
simplified to O(D

3
)+O(D

2
·Nf).

Figure 6. The Relationship between Frames per Window, Feature

Dimension and Computational Complexity. Complexity increases

sharply with the number of frames per window when feature

dimension in high, but is relatively flat when feature dimension is low.

