
Compiler-Managed Register File Protection for Energy-Efficient Soft Error Reduction ∗

Jongeun Lee, Aviral Shrivastava
Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85281, USA
{jongeun.lee, aviral.shrivastava}@asu.edu

Abstract— For embedded systems where neither energy nor reliabil-
ity can be easily sacrificed, we present an energy efficient soft error
protection scheme for register files (RF). Unlike previous approaches,
our method explicitly optimizes for energy efficiency and exploits the
fundamental tradeoff between reliability and energy. While even sim-
ple compiler-managed RF protection scheme is more energy efficient
than hardware schemes, this work formulates and solves further com-
piler optimization problems to significantly enhance the energy effi-
ciency of RF protection schemes by an additional 24%.

I. INTRODUCTION

Power density and reliability have risen to become the most im-
portant design concerns in the sub-nanometer fabrication era. On
one hand, power density has increased so much that we cannot op-
erate processors at the maximum possible clock frequency deter-
mined by design, on the other hand, the basic computational units,
i.e., transistors have become extremely susceptible to soft errors.
Even a slight variation in signal voltage, noise in the power sup-
ply, or even cosmic particle strike can toggle the logic value of the
transistor, eventually causing a system failure [1]. There is a clear
need of techniques to mitigate the impact of soft errors at mini-
mal power overhead. This need is aggravated by the fact that the
soft error rate increases exponentially with temperature. Register
file (RF) is most affected by both of these tightly coupled effects,
since it is both the hottest component in the processor [2], and also
extremely susceptible to soft errors [3].

The earliest forms of register file protection include ECC and
parity checking [4]. However, error checking, especially that based
on ECC, has a large overhead in terms of area, runtime, and en-
ergy [5, 6]. While the latency of ECC operations can be hidden
by parallelizing ECC with other operations, the area and energy
overhead cannot be. To reduce the area overhead of RF protec-
tion, later techniques only protect a part of the RF [7]. To further
reduce overhead of ECC, later schemes simply replicate the reg-
isters they intend to protect. Blome et al. [3] uses a small cache
to store duplicates of recently accessed register values and thus
a simple comparison on every read operation can detect errors in
registers. Memik et al. [8] proposes a technique to replicate some
of the register values in unused physical registers in the context
of superscalar processors, where there are a number of physical
registers and register binding is done at runtime. Another inter-

∗This work is partially supported by grants from Microsoft, Raytheon and Star-
dust Foundation.

esting variation on register replication is in-register replication [9],
which exploits the fact typically a large fraction of register values
are narrower than half the register width, or 16 bits. Such values
can be replicated in the same register, requiring no significant extra
hardware.

All these microarchitectural techniques have persistent power
overhead associated with error checking. Compiler techniques on
the other hand promise very power-efficient RF protection, either
on their own by instruction scheduling or register reallocation to
shorten the live ranges of the variables stored in it [6], or by en-
hancing the effectiveness of microarchitectural techniques of par-
tial RF protection schemes [3, 8, 7] by making the decision of
which registers to protect at compile-time.

This work develops compile-time analysis that explicitly incor-
porates RF power consumption to come up with register renam-
ing that can be used in both, existing pure-compiler techniques,
or to enhance the existing microarchitectural schemes to achieve
to power efficient RF protection. Our experimental results on em-
bedded application benchmarks from MiBench [12] indicate that
even the simplest of such compiler-management schemes can be
more energy efficient than hardware schemes. In addition, our ex-
plicit optimizations can further increase the energy efficiency by
24% on average, as measured by our cost metric on register file
reliability and energy overhead.

II. BACKGROUND AND MOTIVATION

We use vulnerability as the measure of reliability. Following the
architectural vulnerability factor [10] the vulnerability of a register
is defined as the combined lifetime (or the sum of the live range
lengths) of variables assigned to it. The live range of a variable is
from its definition until its last use and represents the time when
useful data is present in the register. Any transient fault occurring
to the register during that time period therefore destroys data in-
tegrity and can manifest itself into an error. Thus given the same
transient fault rate, vulnerability can be used to predict the soft er-
ror rate. The vulnerability of a register file is simply the sum of
vulnerability of all registers. Vulnerability is fully determined by
the register access pattern, and can be controlled by changing the
program.

Researchers have found that not all registers are always vulner-
able and thus significant vulnerability reduction can be achieved
even with only K protected registers that is less than R, the num-
ber of registers, or K entries of redundant information for pro-

TABLE I
ADDITIONAL OPERATIONS OF A PARTIALLY PROTECTED REGISTER FILE
(ONLY THE LAST COLUMN IS NECESSARY IN COMPILER APPROACHES)

Decision Entry Redundant inf.
Write Decide on protection Allocate one Generate one
Read Find if value is protected Find it Check it

tected registers [3, 7]. To make the best use of the K entries we
should protect only those register values that are being useful. The
decision of which register values to protect is done, according to
the previous work, at runtime by hardware logic. There are rea-
sons for that. First it is better to flexibly choose K registers during
execution than to fix them for the entire execution and for all appli-
cations. Second we can consider embedding protection commands
into instructions, signaling to protect the destination register, for
instance. This however changes the instruction set architecture,
which is difficult to justify. Lastly, some versions of the technique
were proposed for superscalar architectures. In this case it may be
best to treat each physical register separately, which can only be
done at runtime.

While a runtime decision approach has the advantage of poten-
tially being able to select the best ones for protection—not only for
minimum vulnerability but also for maximum energy efficiency—
there is a significant drawback: the runtime decision making it-
self can be a very costly operation in terms of energy. Table I
lists the additional operations of a partially protected register file.
For every register access there has to be first a decision whether
it is to a protected one or not (column 2). If it is to a protected
one, additional operations are needed (columns 3 and 4). With a
compile-time decision approach, on the other hand, the decision
step is unnecessary, and allocating and finding an entry can also
become trivial. Only the operations in the last column need to be
done, thus reducing the energy overhead significantly. Particularly
because the decision operations must be performed on every reg-
ister access whereas the other operations are only for accesses to
protected ones, the maximum energy overhead reduction can be
very large depending on the number of accesses to protected ones.
Assuming that 1 out of 4 accesses are to a protected register and the
energy cost for columns 2 to 4 is 1:1:5 (per-access) respectively, a
compile-time decision approach can reduce the energy overhead of
partial protection from 2.5 (= 1 ·1+(1+5)/4) to 1.25 (= 5/4), or
by 50% if the protection decisions are the same in both cases. Note
that this energy cost assumption is overly pessimistic for compiler
techniques, even when there is a huge energy overhead reduction,
indicating greater energy reductions in real cases. This clearly mo-
tivates compiler approaches for energy-efficient vulnerability re-
duction in register files.

III. COMPILER-MANAGED REGISTER FILE PROTECTION

A. Architecture and Compiler Assumptions

One of the issues with compile-time decision is how to spec-
ify which registers to protect without altering the instruction set
architecture. There is a very simple solution: use the register num-
ber. The architecture protects always K highest-numbered archi-

tectural registers, where K is a design parameter, and the compiler
ensures that the protected registers are best utilized for the metric
being used. This scheme can be easily implemented in hardware in
processors with no register renaming, but it could also be approxi-
mately implemented in superscalar processors. The decision logic
is unnecessary, and finding the corresponding entry for redundant
information becomes trivial. The protection mechanism can be any
of ECC, parity, or duplication. While the hardware complexity is
reduced, the responsibility of best utilizing the K entries is solely
upon the compiler, especially the register allocator.

Register allocation is the process of allocating registers to pro-
gram variables, with the goal of minimizing memory spills. Mod-
ifying the performance-optimized register allocation for partially
protected RF can result in an increase in runtime and consequently
in vulnerability as well. Therefore our approach is to swap register
assignments in an already optimized binary, and thus performance-
neutral. Also, this post-compilation register reassignment ap-
proach is simpler to implement than full register re-allocation. Not
requiring source code, it can be readily applied to library functions
which may be important to maximize the overall efficiency.

B. Energy Model

The energy overhead of protecting a register using redundancy-
based schemes (e.g., ECC, parity, and duplication) can be modeled
as the number of reads and writes to the register if we consider
dynamic power only.1 It is because the additional actions due to
protection are only (1) generating redundant information on every
write and (2) checking the correctness of the redundant informa-
tion on every read. The reads and writes may be weighted differ-
ently depending on the energy model of the particular protection
mechanism. Thus the number of accesses, with possibly different
weighting factors, can represent the energy overhead of protected
registers.

C. Compile-Time Optimization Methods

We present two compile-time optimization methods. One is
Application-level Register Swapping (ARS), which is to change
register assignments at the program level. The register assignment
change is captured by a Register Reassignment Vector (RRV),
which is unique for the entire program. The other is Function-
level Register Swapping (FRS), which can change register assign-
ment differently in each function, captured by Register Reassign-
ment Table (RRT), or one RRV for each function. FRS cannot
be done homogeneously for all registers due to the compiler’s
calling convention, which classifies the architectural registers into
groups. Among the groups the most interesting ones are the caller-
saved registers (also called t-registers) and the callee-saved regis-
ters (also called s-registers). Thus there are two version of FRS,
which are referred to as FRS/t and FRS/s. On the other hand, ARS
can be done uniformly for all registers (assuming statically linked
binaries), since calling conventions do not apply when changes are
made consistently in the entire program. The only exceptions are

1Since our compiler technique do not affect the performance, leakage power
remains the same.

the registers that are reserved for system calls and those that are
architecturally distinguished, or that are treated differently by the
instruction set. An example of architecturally distinguished regis-
ter is the link register or r31 in the MIPS architecture [11] since jal
instruction implicitly writes to r31.

IV. FINDING OPTIMAL SOLUTIONS

The flexibility of our compiler-managed register file protec-
tion approach allows for the use of different optimization goals at
compile-time. We consider two optimization goals: vulnerability
and energy efficiency. Optimizing for vulnerability may be thought
of as a direct translation of previous hardware partial protection
techniques into software domain. Optimizing for energy efficiency
goes a step further and is expected to achieve higher energy reduc-
tion. Considering the two optimization goals we have six opti-
mization problems: V-ARS, V-FRS/t, and V-FRS/s for vulnerabil-
ity, and E-ARS, E-FRS/t, and E-FRS/s for energy efficiency. We
formulate the problems and present efficient algorithms for four of
them.

A. Problems

Since the ARS problems are special cases of the FRS prob-
lems (although the scope of ARS is bigger than that of FRS),
we consider formulation of FRS problems. Let R be the number
of registers (either caller-saved or callee-saved) and N the num-
ber of functions. Then a solution to an FRS problem is a RRT
T = {~ρf | f = 1, 2, · · · , N}, each of which is a RRV, or a permu-
tation of integers 1, 2, · · · , R. A RRV ~ρf of function f means that
all the occurrences of register ρfr in function f should be replaced
by register r in the transformed program. Stated another way, all
the variables originally assigned to register ρfr are now assigned to
register r after transformation.

Given a register access trace P and a RRT T , there are two
known procedures CompV(P, T) and CompA(P, T) that compute
the vulnerability vector ~V and the access count vector ~A of all the
registers, where each element of a vector corresponds to each reg-
ister. For K number of protected registers the vulnerability in the
unprotected registers is V1 +V2 + · · ·+VR−K or

∑R−K
r=1 Vr. Sup-

pose that we want to minimize the vulnerability in the unprotected
registers for all values ofK. Assuming uniform distribution onK,
where K varies from 0 to R, the expected vulnerability is propor-
tional to RV1 + (R− 1)V2 + · · ·+VR. Thus the cost function CV

for vulnerability optimization is

Minimize CV =
R∑
r=1

(R+ 1− r)Vr . (1)

For energy efficiency optimization, since there are two metrics
that need to be minimized, we can consider constraint optimization
formulation or combining the two metrics into one cost function.
The former yields an NP-complete problem (not shown here) while
the other can be solved very efficiently, which is presented here.
The energy overhead is modeled as the number of accesses to pro-
tected registers, which isAR−K+1 + · · ·+AR or

∑K
r=1AR−K+r.

Again assuming uniform distribution on K, the expected access
count is proportional to A1 +2A2 + · · ·+RAR or

∑R
r=1 rAr. In-

troducing β representing the weighting factor between vulnerabil-
ity and the access count, the cost functionCE for energy efficiency
is

Minimize CE =
R∑
r=1

(R+ 1− r)Vr + βrAr . (2)

Thus the vulnerability (or energy efficiency) optimization prob-
lems are, given a trace P , find the RRT T that minimizes CV

(or CE), where Vi and Ai are defined by known procedures
CompV(P, T) and CompA(P, T), respectively. We note that in
these formulations optimizing for vulnerability only is a special
case of optimizing for energy efficiency with β = 0.

B. Difference between T-register and S-register

FRS/t problems are simpler than FRS/s problems since the live
range of a t-register is confined to one function.2 In any function
the first access to a t-register must be a write, and t-registers, if
used, should be vacated before making a function call. Conse-
quently the register allocation in one function does not alter the
vulnerability or the access counts of registers in another function.
Nested function calls do not complicate the matter. Thus, for in-
stance, V-FRS/t can be solved by simply sorting the registers by
vulnerability, which coincides with intuition.

FRS/s problems are much more complicated. In any function
the first access to an s-register is a read and the last is a write.
Therefore the live range of an s-register is not limited to one func-
tion but may span several functions. (Unlike a t-register, an s-
register can be vulnerable even if there is no access to it in a func-
tion, which is the case if the first access after the function is a read.)
Consequently the register allocation in one function can alter the
vulnerability of s-registers in another function. The complexity is
further elevated by nested function calls.

ARS problems are special cases of FRS/t problems with only
one function. Intuitively, V-FRS/t problem, and consequently V-
ARS problem also, can be easily solved by sorting the registers by
vulnerability, which will become clear in the next subsection.

C. E-ARS and E-FRS/t Solutions

Unlike vulnerability optimization, optimizing for energy effi-
ciency is not very intuitive. One intuition says that sorting the reg-
isters by vulnerability-to-access-count ratio so that high-numbered
registers will have higher vulnerability and lower access count than
low-numbered registers, will give overall good energy efficiency.
Although very likely, it is not always the case. (Counter examples
are not shown due to the space constraint.) Without an efficient
algorithm even the E-ARS problem can be difficult to solve opti-
mally. A naı̈ve approach evaluating all the R! register orderings,
for instance, is virtually infeasible because R! > 1029 for R = 28,
which is the number of ARS-swappable registers in the MIPS ar-
chitecture.

2In the context of FRS, we regard any register whose live range is limited to
within a function as t-register.

returncallreturncall

t2 t4 t5 t6time time
W

F2

t1 t3

F4

F3F3F1F1

R/WR W W R/W

Fig. 1. S-register access pattern in relation to function calls.

Fortunately, there is an efficient algorithm for E-FRS/t and con-
sequently E-ARS problems. For t-registers the register file vul-
nerability in a function is fully determined by the function itself,
greatly simplifying CompV and CompA procedures. Let vir and
air be the vulnerability and access count of register r in function i
before register reassignment, which can be easily found from the
register access trace P . For a RRT T = {~ρi | i = 1, 2, · · · , N}, Vr
and Ar can be computed as:

Vr =
N∑
i=1

viρi
r

, Ar =
N∑
i=1

aiρi
r

(3)

Substituting (3) in (2) and changing the order of summations
shows that the cost function CE can be minimized by minimiz-
ing CE for each function, or C ′ defined as:

C ′(~ρ) =
R∑
r=1

(R+ 1− r)vρr
+ βraρr

(4)

Lemma 1 For two registers i and j, where vi−βai < vj−βaj , if
any register ordering ~ρ puts register i in a higher-numbered regis-
ter than j, swapping the two registers i and j always gives a lower
C ′ value defined by (4).

Proof Let x be the register number with which the register i is
replaced in a register ordering ~ρ. That is, ρx = i. Likewise let y be
a number such that ρy = j. Then it is given that x > y. Let σ be
equal to ρ except that σx = j and σy = i. Since C ′(~σ) is always
less than C ′(~ρ) as shown below, swapping i and j always gives a
lower cost.

C ′(~ρ)− C ′(~σ)
= (R+ 1− x)vρx

+ βxaρx
+ (R+ 1− y)vρy

+ βyaρy

−(R+ 1− x)vσx
− βxaσx

− (R+ 1− y)vσy
− βyaσy

= (x− y)(vj − βaj − vi + βai) > 0

Thus sorting the registers by (vi−βai) in each function gives the
optimum solution for E-FRS/t (and E-ARS). As for the weighting
factor β, any positive value can be used and it is not even required
for (vi − βai) to be positive, but the most sensible value would be
the overall vulnerability-to-access-count ratio. The complexity of
this algorithm is O(NR log(R)) for N functions.

D. FRS/s Solution

To understand the complexity of the FRS/s problems let us con-
sider an s-register access pattern illustrated in Fig. 1. Accesses are
represented by small thick vertical bars annotated with time and

type. In any function the first access to an s-register must be a read
and the last must be a write, which necessarily creates vulnerable
intervals spanning multiple functions. First example, illustrated by
interval (t1, t2), includes a function call only, and is always vulner-
able since t2 must be a read. However second example, illustrated
by interval (t3, t4), includes a function return, and may or may not
be vulnerable since t4 can be either read or write. Therefore the
vulnerability of F2 (callee), and hence the optimal RRV for F2,
depends on the RRV for F1 (caller).

Now suppose that not all s-registers are used in F2. Then on
certain register reassignments of F2 the s-register in question can
have no access, as illustrated on the right side of Fig. 1. In this
case interval (t5, t6) may or may not be vulnerable, depending on
the type of access at t6. Thus not only the callee (F4) vulnerability
may depend on the caller (F3), but the caller vulnerability, and its
optimal RRV, can also depend on the callee. This inter-dependence
between functions exists for all caller-callee pairs unless every s-
register is used in the callee (on every invocation). Since all func-
tions are connected through caller-callee relationship, optimizing
for one function in general depends on the optimization of ev-
ery other function. This tight inter-dependence between functions
makes it very unlikely to find an efficient algorithm. Exhaustive
search has O(R! · R! · · ·R!) = O(RRN) complexity, and with-
out somehow breaking the inter-dependence the best we can get is
O(RN), which is still exponential.

One simple heuristic exploits the fact that s-registers are more
likely to be first read after control is transferred to another function
(because every first access in a callee function is a read). Our pro-
filing on GCC from SPEC 2000 indicates that this is true for more
than 90%. Using this insight we can fix the s-register vulnerabil-
ity of each function, which breaks the inter-dependence, and the
problem becomes identical to FRS/t.

Table II summarizes the six problems we discussed. Vulnerabil-
ity optimization is mostly obvious whereas optimizing for energy
efficient is less intuitive. In both cases FRS/s problem presents a
greater challenge, for which we proposed a simple algorithm.

TABLE II
COMPARISON OF PROBLEMS

Method (Scope) For Vulnerability For Energy Efficiency
ARS (Almost all regs) Very simple Efficient algorithm exists
FRS/t (T-registers only) Very simple Efficient algorithm exists
FRS/s(S-registers only) Finding optimum is very complex; heuristic

V. EXPERIMENTS

A. Evaluation Methodology

To evaluate the effectiveness of the proposed methods we per-
form simulations using embedded benchmark applications [12].
We use the SimpleScalar performance simulator [13], configured
for in-order execution. Applications are compiled with GCC
2.7.2.3 using the benchmark-specified optimization level. The tar-
get architecture has the MIPS instruction set [11], in which there

are 11 t-registers (r1, r8 through r15, and r24 and r25) and 9 s-
registers (r16 through r23 and r30).3 In applying E-ARS and E-
FRS algorithms in our experiments we set the weighting factor
β to the overall vulnerability-to-access-count ratio of the original
program.

One of our claims is that our compiler-managed register file pro-
tection is more energy efficient than hardware only schemes. Since
the energy difference is expected to be high, it seems better to con-
sider the ideal case for the entire hardware approach than compar-
ing with every hardware scheme. The ideal case in the context of
hardware schemes is maximum vulnerability reduction, which is
however a hard problem by itself. Which variables to protect to
maximize vulnerability can be decided optimally from a register
access trace, but it is an NP-hard problem as it closely resembles
the register allocation problem [14], of which the best known prac-
tical solution is the Chaitin-Briggs algorithm [14], whose com-
plexity is O(n2) for n variables. Obviously running this algorithm
on our register access trace (of 500K ∼ 100M dynamic variables)
is almost impossible.

From the energy efficiency perspective the ideal case is to pro-
tect only those variables with the highest lifetime-to-access-count
ratio. But at the same time we should try to maximally utilize
the protected registers. Thus one reasonable upper bound on the
energy efficiency or V/E can be found as follows. (i) Sort the dy-
namic variables in the decreasing order of (vi − βai), where vi
is the lifetime (representing vulnerability), ai is the access count,
and β is the overall vulnerability-to-access-count ratio. (ii) Take
the sorted variables one by one adding their vi to V and ai to A
until the selected variables cannot be mapped toK registers due to
the interference (i.e., variables with overlapping live ranges can-
not be mapped to the same register). Note that this can be done
efficiently using the left-edge algorithm [15] and by fixing the al-
location of already selected variables.4 (iii) Then the resulting V
and A will have high V and low A, approximating an ideal case
from the energy efficiency perspective (denoted by HWideal).

B. Comparison between Compile-Time Optimizations

We first compare the four optimization methods (V- and E- ver-
sions of ARS and FRS) for their optimization capability. V-ARS
represents the simplest form of compiler-managed RF protection
while E-FRS is the most optimized for energy efficiency. For this
comparison we limit ARS to s-registers (t-registers). The K pro-
tected registers are also assumed to be s-registers (t-registers). Fig-
ures 2 (a) and (b) compare the four methods in terms of vulnera-
bility and energy overhead of protecting s-registers (for jpeg). The
V-K graph visualizes the decreasing RF vulnerability as we in-
crease K. While we observe some differences between optimiza-
tion methods (with V-FRS achieving the greatest vulnerability re-
duction), the differences are rather limited. More interesting one

3r30 can be used as the frame pointer but our GNU C compiler is configured to
use it as an s-register.

4This is to avoid running the left-edge algorithm anew whenever a new variable
is added. Fixing the allocation can give inferior solutions while being faster (the
complexity is O(n log(n))); that is, less variables may be mapped to K registers
than is possible with more time-consuming algorithms, which is why this method
gives a higher V/A ratio.

TABLE III
COMPARISON OF DIFFERENT OPTIMIZATION METHODS AND SCHEMES: IN

TERMS OF THE COST VALUE DEFINED BY (2) WITH NORMALIZATION*

S-REGISTERS T-REGISTERS

App. #func** E-ARS E-FRS E-ARS E-FRS SW-E
jpeg 11 0.84 0.77 0.82 0.74 0.81
tiff 2 0.87 0.81 0.40 0.39 0.71
typeset 13 0.88 0.85 0.91 0.88 0.78
patricia 21 0.87 0.82 0.86 0.76 0.77
ispell 16 0.91 0.89 0.91 0.90 0.78
rsynth 18 0.89 0.88 0.80 0.72 0.74
stringsearch 11 0.87 0.84 0.97 0.93 0.70
pgp 16 0.93 0.82 0.86 0.75 0.76
fft 18 0.94 0.89 0.87 0.72 0.77
gsm 7 0.73 0.67 0.84 0.84 0.84

Geo. Mean 0.87 0.82 0.80 0.75 0.76
*All the cost values are normalized to that of V-ARS (in the case of s-registers and
t-registers) and SW-V (in the case of SW-E).
**The second column shows the number of functions each accounting for more
than 1% of the runtime.

is the V-E graph, which illustrates the tradeoff between vulnerabil-
ity and energy overhead5 for different K. Here the nearer to the
lower left corner, the more energy efficient. Contrary to vulnera-
bility optimizations (V-ARS, V-FRS), which are scattered along
the diagonal line, energy efficiency optimizations form smooth
curves. Quantitatively, when K = 6, E-ARS can achieve 24%
energy overhead reduction over V-ARS while E-FRS gives addi-
tional 28% over E-ARS without affecting vulnerability. We ob-
serve similar trends across a number of applications. To summa-
rize the results we again use the CE cost metric defined in (2).
The cost metric is computed using the simulation statistics after
applying register reassignments. The result is summarized in Ta-
ble III normalized to the V-ARS case. Though not shown in the
table, from the efficiency perspective V-FRS is worse than V-ARS
in several applications. On average, when used for s- or t-registers,
E-ARS can reduce the cost metric by 13∼20% over the simple V-
ARS technique while E-FRS can give additional 5% reduction on
average. The actual energy efficiency improvement however can
be greater depending on K, especially in the medium range of K
(see Fig. 2 (b)).

C. Compiler-Managed vs. Ideal Hardware-Managed

While FRS is superior to ARS in terms of optimization capa-
bility, they are complementary rather than competing since ARS
can (and should) be used together with FRS. So the most interest-
ing use cases would be: SW-E (applying all of E-FRS/t, E-FRS/s,
and E-ARS) and SW-V (applying V-ARS only). We compare those
cases against HWideal, the ideal hardware case. For the compiler-
management schemes we assume that the architecturally distin-
guished registers are protected the first, which means r31 is always
protected. On the other hand, those reserved for system calls are
assumed to be protected the last, which is fair as they cannot be
used in our experimental setup. For the energy ratio between the
three operations, we use 5:1:10 and 1:1:5 (decision, entry, and re-

5Here the energy overhead (E in the graph) is the number of accesses to pro-
tected registers.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07

V
 (c

yc
le

*w
or

d)

E (accesses)

−28% in E −24% in E

V−ARS
V−FRS
E−ARS
E−FRS

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 0 1e+07 2e+07 3e+07 4e+07 5e+07

V
 (c

yc
le

*w
or

d)

E (accesses)

HWideal (5:1:10)
HWideal (1:1:5)

SW−V
SW−E

(a) V-K plot for s-registers (b) V-E plot for s-registers (c) V-E plot for all registers

Fig. 2. Vulnerability and energy tradeoff of protecting registers (for the jpeg case).

dundant information, respectively), which can vary depending on
the exact protection mechanism used.

Figure 2 (c) compares the tradeoff generated by different
schemes for jpeg example. The x-axis (E in the graph) represents
the energy overhead due to RF protection, considering the decision
and entry related energy. First, even for the whole register file,
SW-E can achieve much higher energy efficiency compared to the
simple SW-V. Second, ideal hardware cases have a very steep slope
for low values of K and thus high energy efficiency in that region.
However, it is offset by constant energy overhead due to runtime
decision. Third, only if the energy ratio is 1:1:5 (which is relatively
low decision overhead) the ideal hardware case can overlap with
the SW-V curve, but not the SW-E curve, which is the most energy
efficient. We repeated similar experiments for other applications,
which is summarized in Table III (last column). For the entire reg-
ister file, our energy efficient optimization scheme can consistently
improve the energy efficiency over the simple SW-V, by 24% on
average. Quantitative comparison with the ideal hardware case is
not reported as it would be highly sensitive to the energy ratio used.

VI. CONCLUSION

We presented a compiler approach to highly energy efficient
register file protection for embedded systems. While previous
approaches concentrated only on maximizing protections mainly
through architectural changes, we show that pure hardware based
solutions can suffer from high energy overhead, which can be a
critical concern in embedded systems. Our approach is to ex-
plicitly maximize the energy efficiency through compilers, which
can easily exploit the fundamental tradeoff between vulnerabil-
ity and energy. Our proposed post-compilation optimizations do
not disturb existing optimizations but merely improves reliability
with minimum energy overhead by swapping registers both at the
function and program levels. We formulate and analyze impor-
tant compile-time optimization problems and present efficient al-
gorithms for some of them. Our experiments using embedded ap-
plication benchmarks demonstrate that even the simplest of such
compiler-management schemes (eg., V-ARS) can be more energy
efficient than hardware schemes, and that explicit optimization

(eg., E-FRS) can further increase the energy efficiency, by 24%
on average as measured by our cost metric on register file vulner-
ability and energy overhead.

REFERENCES

[1] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust system design
with built-in soft-error resilience,” IEEE Computer, vol. 38, pp. 43–52, 2005.

[2] S. Park, A. Shrivastava, N. Dutt, A. Nicolau, Y. Paek, and E. Earlie, “Bypass
aware instruction scheduling for register file power reduction,” pp. 173–181,
2006.

[3] J. A. Blome, S. Gupta, S. Feng, and S. Mahlke, “Cost-efficient soft error
protection for embedded microprocessors,” in CASES ’06, 2006, pp. 421–
431.

[4] T. J. Slegel et al., “IBM’s S/390 G5 microprocessor design,” IEEE Micro,
vol. 19, pp. 12–23, 1999.

[5] R. Phelan, “Addressing soft errors in ARM core-based SoC,” 2003, ARM
white paper.

[6] J. Yan and W. Zhang, “Compiler-guided register reliability improvement
against soft errors,” in EMSOFT ’05, 2005, pp. 203–209.

[7] P. Montesinos, W. Liu, and J. Torrellas, “Using register lifetime predictions
to protect register files against soft errors,” in DSN ’07, 2007, pp. 286–296.

[8] G. Memik, M. Chowdhury, A. Mallik, and Y. Ismail, “Engineering over-
clocking: reliability-performance trade-offs for high-performance register
files,” DSN ’05, pp. 770–779, 2005.

[9] M. Kandala, W. Zhang, and L. Yang, “An area-efficient approach to improv-
ing register file reliability against transient errors,” in Int’l Symp. on Embed-
ded Computing, 2007.

[10] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability factors for
a high-performance microprocessor,” in Proc. International Symposium on
Microarchitecture, Dec 2003.

[11] D. Patterson and J. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann Publishers, 2004.

[12] M. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “Mibench: A free, commercially representative embedded bench-
mark suite,” in Int’l Workshop on Workload Characterization, 2001.

[13] T. Austin, “SimpleScalar LLC.”
[14] P. Briggs, K. D. Cooper, and L. Torczon, “Improvements to graph coloring

register allocation,” ACM Trans. Program. Lang. Syst., vol. 16, pp. 428–455,
1994.

[15] R. E. Sant’Anna, M. E. de Lima, and P. R. M. Maciel, “A left-edge algorithm
approach for scheduling and allocation of hardware contexts in dynamically
reconfigurable architectures,” in Int’l Symp. on Field programmable gate ar-
rays, 2004, pp. 259–259.

