
A Compiler Optimization to Reduce Soft Errors in Register Files

Jongeun Lee Aviral Shrivastava
Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85281, USA
{Jongeun.Lee, Aviral.Shrivastava}@asu.edu

Abstract
Register file (RF) is extremely vulnerable to soft errors, and tradi-
tional redundancy based schemes to protect the RF are prohibitive
not only because RF is often in the timing critical path of the pro-
cessor, but also since it is one of the hottest blocks on the chip,
and therefore adding any extra circuitry to it is not desirable. Pure
software approaches would be ideal in this case, but previous ap-
proaches that are based on program duplication have very signifi-
cant runtime overheads, and others based on instruction scheduling
are only moderately effective due to local scope. We show that the
problem of protecting registers inherently requires inter-procedural
analysis, and intra-procedural optimization are ineffective. This pa-
per presents a pure compiler approach, based on inter-procedural
code analysis to reduce the vulnerability of registers by temporar-
ily writing live variables to protected memory. We formulate the
problem as an integer linear programming problem and also present
a very efficient heuristic algorithm. Our experiments demonstrate
that our proposed technique can reduce the vulnerability of the RF
by 33 ∼ 37% on average and up to 66%, with a small 2% increase
in runtime. In addition, our overhead reduction optimizations can
effectively reduce the code size overhead, by more than 40% on
average, to a mere 5 ∼ 6%, as compared to highly optimized bina-
ries.

Categories and Subject Descriptors D.3.4 [Software]: Program-
ming languages, Processors—Code generation, Compilers, Op-
timization; B.8.1 [Hardware]: Performance and Reliability—
Reliability, Testing, and Fault-Tolerance; C.3 [Computer Systems
Organization]: Special-purpose and application-based systems—
Real-time and embedded systems

General Terms Algorithms, Reliability, Performance

Keywords Embedded system, Soft error, Register file, Architec-
tural vulnerability factor, Static analysis, Compilation, Link-time
optimization

1. Introduction
Due to continuous technology scaling, soft errors—transient faults
mainly caused by energetic particles—are becoming an important
design concern for earthbound applications in addition to space
applications [ITRS]. Traditionally, due to their large size, only

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’09, June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-356-3/09/06. . . $5.00

memory structures like the main memory and caches were consid-
ered important for protection against soft errors. However, recently,
Blome et al. [2006] observed that the majority of the faults both
in combinational and sequential logic that affect the architectural
state of a processor come from the register file. Since register files
are accessed very frequently, corrupted data in the register file can
quickly spread to other parts of the system, increasing chances of
an error. While memory structures, like caches and the main mem-
ory are routinely protected using parity or Error Correcting Codes
(ECC) [Mitra et al., 2005], protecting the Register File (RF) using
such schemes is prohibitive not only because the RF is often in the
timing-critical path of the processor [Shrivastava et al., 2004], but
also because RF is one of the hottest blocks on the chip [Skadron
et al., 2003], and adding any additional circuitry only exacerbates
the situation.

In a bid to reduce the additional hardware circuitry, previous
techniques have proposed to protect only a part of the register
file [Montesinos et al., 2007]. While it is possible to select which
variables to map onto the protected registers in hardware, power-
efficient solution is for the compiler to map variables to the pro-
tected registers at a higher priority during register allocation [Lee
and Shrivastava, 2009a]. Nevertheless, this still includes additional
hardware overhead.

Complete software solutions come in the form of code duplica-
tion [Oh et al., 2002b, Reis et al., 2005] and control flow check-
ing [Oh et al., 2002a], either partially or fully duplicate the pro-
gram code in order to detect errors in the original program. Full
duplication of the code will be able to detect any error including
those in RF, but the overhead is generally high in terms of both
code size and performance, whereas partial duplication or control
flow checking is able to detect only a subset of errors in the RF.
The only pure software approach at the compiler level is by Yan
and Zhang [2005], in which they reduce the distance between loads
and stores to protect the RF, but it is not very effective owing to the
local nature of instruction scheduling.

Like Yan and Zhang [2005], we also rely on certain protected
components in the processor (namely, the memory) to protect the
contents of registers, but we take this one step further. We insert
explicit load/store instructions to temporarily write live registers in
memory in order to protect them. The idea of using the memory
to protect registers is counter-intuitive, since whenever a variable
is used it must be brought to the RF, so keeping it in the mem-
ory to protect it may result in significant performance degradation,
which could make the variables stay longer in the register file on
average, exposed to soft errors for a longer duration. The funda-
mental conflict is, that while performance is maximized by keeping
live variables in the RF, protection is maximized by evicting live
variables from the RF. Despite this conflict, our initial investigation
into the scope of pure-compiler approaches shows promise.

41

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

2

4

6

8

10

12

N
o
.
o
f

O
cc

u
rr

en
ce

s
(x

1
0
^

6
)

Length of Vulnerable Intervals

Number of Occurrences

Accumulated RFV (right-to-left)

A
cc

u
m

u
la

te
d

 R
F

V

Figure 1. Histogram of vulnerable intervals showing the scope of
compiler approaches. Vulnerable intervals that are 512 cycles or
longer contribute about 43% of the RFV.

1.1 Motivation
On the lines of Architecture Vulnerability Factor proposed by
Mukherjee et al. [2003], we define Register File Vulnerability
(RFV) as a metric for soft error susceptibility of the Register File
(RF) at the microarchitecture-level. A register is vulnerable at any
moment of time, if the next access to the register will be a read by
the processor, or if it will be stored into the memory which may be
used later by the processor. A register is not vulnerable if it will be
simply overwritten. An interval between consecutive accesses to
the same register during which the register is vulnerable is defined
as a vulnerable interval. During the execution of a program, a reg-
ister may have multiple vulnerable intervals. The vulnerability of a
register in the program is the amount of time during which the reg-
ister was vulnerable, and can be calculated as the sum of the lengths
of all its vulnerable intervals. Finally the vulnerability of the reg-
ister file, or RFV is simply defined as the sum of vulnerabilities of
all the registers.

We first observe that the vulnerability of program variables vary
greatly depending on the type of registers they get assigned to.
Variables assigned to caller-saved registers, or t-registers in the
MIPS architecture [Yeager, 1996], have very short live ranges,
since they have to be saved and restored before/after every function
call. Contrarily, variables assigned to callee-saved registers, or s-
registers, may have very long live ranges if the registers are not
used in the callee function, since save and restore operations are
not required when they are not used. The opportunity for compiler
optimizations on reducing RFV is in those variables with long live
ranges.

Second, the real opportunity for low-overhead RFV reduction
comes when there is a long interval during which some registers are
not accessed at all. To see how often such intervals would appear in
real embedded applications, we profiled several applications from
the MiBench benchmark suite [Guthaus et al., 2001] collecting the
lengths of vulnerable intervals of all the registers. The applications
were compiled to MIPS binary and executed on SimpleScalar sim-
ulator [Austin]. The vertical bars in Figure 1 plot the histogram of
the occurrences of vulnerable intervals in the jpeg application. It
shows that most vulnerable intervals are small. More than 99% of
vulnerable intervals are less than 512 processor cycles long. While
that is true, the more useful observation is that, even though the
number of long vulnerable intervals is less, they contribute con-
siderably to the total vulnerability of the RF. This is depicted by
the continuous curve which plots the cumulative vulnerability, ac-
cumulated from right to left. It shows that the long vulnerable in-
tervals (> 512 cycles) contribute about 43% to the total RFV. If

a compiler can identify all such long vulnerable intervals, it will
be possible to significantly reduce the RFV at minimal power and
performance overhead. Clearly there is significant scope for RFV
reduction, and the effectiveness of the compiler techniques rests on
how many long vulnerable intervals can the compiler discover, and
if it will be able to protect those registers with minimal code over-
head, while maintaining the program correctness.

1.2 This Work
A simple way to reduce RFV is to find heavily executed loops,
identify unused registers in them, and save/restore the registers
before/after the loops. However, with such an ad-hoc method, it
is not only hard to achieve optimal results but also very cumber-
some to handle complex control flows, function calls, and even
recursive functions. Moreover, an intra-procedural optimization
has a fundamental weakness that it can protect even unnecessary
intervals, which significantly lowers the efficiency of ad-hoc meth-
ods. We approach this as an optimization problem: given a per-
formance bound, what is the set of program points in which to
insert save/restore operations so that the transformed program
will achieve the minimum RFV with minimal code size over-
head? This is inherently an inter-procedural problem, since reg-
ister save/restore operations can easily affect other functions along
the program paths, not only in terms of functionality but more in
terms of RFV, and also because identifying long vulnerable inter-
vals will necessarily demand considering more than one functions.
Other challenges include devising simple yet effective save/restore
operations, inserting them not overly but just enough to guarantee
the program correctness, and accurately estimating their effect on
performance, code size, and RFV, in the midst of complex control
flows and function calls.

After discussing the limitations of intra-procedural approaches,
we first formulate the problem as a large ILP (Integer Linear Pro-
gramming) problem. This ILP involves far too many variables and
constraints that it is practically impossible to solve. Hence we pro-
pose a scalable solution based on the concept of access-free region,
or a connected subgraph in a control flow graph with no access to
a particular register (it is analogous to vulnerable interval but in
the static domain). Using access-free regions, our technique tries to
find the best save/restore points by first discovering all the maximal
access-free regions through an inter-procedural analysis, and then
selecting the most profitable ones after cost-benefit evaluation. Ad-
ditionally, we perform overhead reduction optimizations to reduce
the code size overhead due to our transformation.

Our experimental results on a number of applications from
MiBench benchmark suite [Guthaus et al., 2001] demonstrate that
our compiler techniques can effectively reduce RFV, by up to 66%,
or 33 ∼ 37% on average, with a small 2% increase in runtime.
The RFV reduction by our technique is much higher compared to
an average 9.4% reduction by an intra-procedural method mimick-
ing ad-hoc optimization, and close to the potential maximum RFV
reduction of 47% (on average). Also, our overhead reduction op-
timizations can effectively reduce the code size overhead, cutting
it by more than 40%, to a mere 5 ∼ 6% compared to the original,
highly optimized binaries.

2. Limitations of Intra-procedural Approach
Intuitively, most RFV is very likely to be generated by heavily
executed loops and functions. Thus if we can reduce the RFV in
those kernel loops, which account for, say, more than 95% of the
execution time, we seem to be able to effectively reduce the total
RFV, just like reducing the number of cache misses. However,
there is an important difference between RFV and performance
optimization. Whereas performance can be very much considered
in isolation without considering other parts of the program, and still

42

function-main() {
save register s1, s2;
use register s1, s2;
function-foo();
s2 = function-bar(); // writing to s2
s1 = s1 + s2;
restore register s1, s2;

}

function-foo() {
loop1 {

use register t1;
}
use register t1, t2;

}

function-bar() {
save register s1;
loop2 {

use register s1, t1, t2;
}
restore register s1;

}

Figure 2. Example program to illustrate limitations of intra-
procedural approaches. For instance, whether s2 is vulnerable in
loop1 cannot be determined from function foo.

main foo bar main

main

t1
t2
s1
s2

Figure 3. Vulnerable intervals of the example, represented by solid
bars. The dashed bar in the last row is not vulnerable. Among the
four round boxes indicating the intervals that would be protected
by ad-hoc method, only one (s1) is vulnerable.

be quite accurate, RFV can be sometimes completely dependent
on other parts than the part in question, which thwarts any local
approach to optimizing RFV.

To illustrate the point, let us examine an ad-hoc method to
reduce RFV, that is to first identify unused registers in most heavily
executed loops and then protect them. We show through an example
that it can lead to a very inefficient solution. Here we assume that
there are only four registers available, and two of them, namely
t1 and t2, are caller-saved registers that callee functions can use
without first saving them, while the others, namely s1 and s2,
are callee-saved registers that callee functions must save before
use. Ignoring other details, the program from the register access
point of view can look like Figure 2. The program consists of three
functions. Function main uses s-registers only as it expects to call
other functions. Function foo uses t-registers only, which can be
used without saving. Lastly, function bar uses all but s2 registers.
Note that in function bar, s1 must be saved before use whereas
t1 and t2 can be used right away. There are only two types of
operations on a register: read and write. From this point of view,
save is a read (from a register), restore is a write (to a register), and
use may be any.

Now, straightforward application of the ad-hoc method will
identify t2, s1, and s2 as unused registers in loop1, and s2

as the unused register in loop2, all of which will be protected.
However, only one of them is really necessary while the others
just add to the overhead. To see this, let us consider the vulnerable
intervals of the program, which is illustrated in Figure 3. The top
row represents the function execution sequence, and the next rows
show the vulnerable intervals for each register. Note that live range
of a t-register is always contained in one function whereas live
range of an s-register may span multiple functions. The live ranges
of s2 are particularly interesting. Register s2 is live in the first
and last segments of main but not inbetween because the interval
(dashed line) ends with a write (see line 5 of Figure 2). Thus only
the solid lines are vulnerable intervals and their total length is equal
to the RFV of the program. Now if we locate in the diagram the
intervals that would be protected by the ad-hoc method (marked
with round boxes), we can see that only one of them is vulnerable.
All the others are unnecessarily protected. This “false protection
effect” that an optimization tries to protect register intervals that
are never or rarely vulnerable can significantly lower the efficiency
of the optimization.

To check whether an interval is live at a certain point requires
in general an inter-procedural analysis. In our example, whether
t2 is live at the end of loop1 can be known simply by looking at
the first access after the loop (which is also in the same function).
In this example, the first access is, and must be, a write because
t2 does not appear before the loop, but it could be a read if t2
were used before the loop. In either case, the liveness of a t-register
can be known by an intra-procedural analysis. However, s-registers
are more tricky. If an s-register is not used in a function, e.g., s1
and s2 in foo or s2 in bar, other functions must be consulted to
determine its liveness. And since there is no bound on how many
caller/callees have to be searched in the call graph before finding
the first access, which can be either read or write, and since call
graphs may contain cycles, our problem requires a nontrivial inter-
procedural analysis.

3. Problem Formulation
The problem is to find the set of program locations to insert save
and restore operations that will maximize RFV reduction, with
minimal code size overhead, under a given performance bound.
Specifically,

• Input: τ (performance tolerance), optimized binary of the pro-
gram

• Output: Sr (set of program points to insert save operation for
register r),Rr (set of program points to insert restore operation
for register r)

• Objective: Maximize RFV reduction and minimize code size
overhead

• Constraints: Runtime overhead should be less than τ ; program
behavior must remain the same.

We can consider the save and restore operations as mode chang-
ing operations. Hence, our system has two modes, which we call A
(“unprotected”) and B (“protected”). Initially the program starts in
mode A. The save and restore operations change the mode from A
to B and from B to A, respectively. There are two modes for each
architectural register in the processor, but since our technique deals
with each register individually, we will often refer to the modes as
if there are only two of them.

Mode change operations affect the mode of the program exe-
cution until the next mode change operation is performed. There-
fore the mode is determined at runtime by the path of the program
execution and not by the program location. In other words, an in-
struction at a certain program location could be executed in either
mode at runtime depending on the program execution path leading

43

up to the program location. However, this dependence of mode res-
olution on execution paths makes static analysis very hard and it
becomes even more challenging to guarantee program correctness.
Thus we require that each program point be associated with only
one of the two modes with respect to each register.

This small assumption transforms our problem into that of par-
titioning, where we need to partition all the program points into
two groups. To further simplify our discussion let us consider the
problem at the basic block granularity (thus we only need to parti-
tion basic blocks). Then to preserve the program semantics requires
that we map any basic block accessing a register to mode A with
respect to the register. For the rest of the basic blocks, which are
called access-free blocks, we need to find the optimal mapping so
that the mode change overhead is minimized and the RFV reduc-
tion is maximized.

This leads to an ILP formulation as follows. We require branch
probabilities, which can be obtained from either static analysis [Wu
and Larus, 1994] or profiling, to compute all the execution counts
of basic blocks and edges between them. For this ILP formulation
only, we further require register liveness information of each basic
block, or the probability of a register being live at the end of a
basic block, which may be obtained from static analysis [Lee and
Shrivastava, 2009b] or profiling.
Input:

• τ : runtime tolerance in dynamic instruction count
• G = (V,E): Inter-procedural Control Flow Graph (ICFG) of

the program, where V is the set of basic blocks and E is the set
of edges representing the control flows

• ni: number of instructions of basic block i ∈ V
• bi: execution count of basic block i ∈ V
• fi,j : execution count of edge (i, j) ∈ E
• R: the set of architectural registers
• lri : liveness of register r ∈ R at the end of block i ∈ V

Output:

• xr
i : binary variables denoting the mode of basic block i ∈ V

with respect to register r ∈ R (1 if mode B).

Let Accr be the set of basic blocks in which register r is
accessed at all. Then the following is necessary to preserve program
semantics.

∀r ∈ R, ∀i ∈ Accr : xr
i = 0 (1)

Also, on every edge (i, j) ∈ E where blocks i and j are mapped
to different modes we must insert a mode change operation, unless
the register is statically known to be not alive at the end of i. This
condition is modeled by binary variables yr

i,j = (xr
i 6= xr

j)∧(lri 6=
0), with 1 denoting that a mode change operation is required. The
above equation can be linearized using auxiliary binary variables
tri,j , u

r
i,j . The term (lri 6= 0) is a constant evaluating to either 0 or

1.
∀r ∈ R,∀(i, j) ∈ E :

xr
i + xr

j = tri,j + 2ur
i,j ,

yr
i,j ≤ tri,j , yr

i,j ≤ (lri 6= 0),

yr
i,j ≥ tri,j + (lri 6= 0)− 1

(2)

Then the code size increaseC and runtime increaseR can be easily
expressed.

C =
∑

r

∑
(i,j)∈E

yr
i,j

R =
∑

r

∑
(i,j)∈E

fi,jy
r
i,j

Original Binary

Inter-procedural CFG

Analysis

Set of Maximal AFRs

Evaluation

Selection

Post-Optimization

Modified Binary Runtime, RFV

ILP

Heuristic
Cycle-Accurate

Simulation

For all

regs

Pre-Optimization

Figure 4. Overall flow of our technique.

The RFV reduction is equal to the total register vulnerability in the
basic blocks mapped to mode B. Approximating the time spent in
basic block i to the number of instructions ni, the RFV reduction
can be calculated as follows [Lee and Shrivastava, 2009b]:

V =
∑

r

∑
i∈V

nibil
r
i x

r
i

Now the ILP is to maximize V −αC for some weighting parameter
α while satisfying (1), (2), and R < τ . As the number of basic
blocks can be large even for a modest-size program, solving this
ILP may require prohibitive amount of resources. Therefore we
need a more scalable solution, which we present in the next section.

We realize that our problem bears some resemblance with the
min-cut graph partitioning problem [Garey and Johnson, 1979],
which is NP-complete and has many heuristic algorithms includ-
ing [Kernighan and Lin, 1970], in that our problem also favors
partitioning with smaller cut cost. However, several complications
make direct application of existing heuristics very difficult. First,
the objective, RFV reduction, is determined not only by the charac-
teristics of the blocks mapped to mode B, but also by what comes
after the blocks in the program flow. Although to avoid this issue
we assumed register liveness information (lri) in this section, in
the next section we develop an algorithm that do not require such
information as an input. Second, register liveness also influences
the cost of a cut, possibly eliminating it, as represented by vari-
ables yr

i,j . Third, our goal is to reduce the code size as well as the
runtime. Straightforward application of min-cut partitioning algo-
rithms would try to minimize only one of them. Finally, the cost
and objective functions are defined collectively considering all the
registers. Solving a min-cut partitioning problem for each register
could result in extremely poor solutions, although we could also
merge the graphs at the cost of much longer solving time.

4. Proposed Solution
4.1 Overview
Our solution is based on an intuitive idea that the largest RFV
reduction with the smallest overhead results when we map to mode
B an entire loop or function containing no access to some registers.
To exploit this idea, we define Access-Free Region (AFR) as a
connected subgraph of an Inter-procedural Control Flow Graph
(ICFG) [Harrold et al., 1998] containing access-free blocks only.

44

(Considering AFRs instead of individual blocks also makes it much
easier to reason about register liveness, which influences both cost
(runtime, code size) and benefit (RFV reduction) in our problem
definition.) Then, a maximal AFR, which is an AFR contained by
no other AFR but itself, can generate the greatest RFV reduction,
and closely matches our notion of access-free loops and functions.
Our method is essentially to discover all the maximal AFRs in the
program and select the best ones through cost and benefit analysis
(see Figure 4). As will be discussed next, mode change operations
originally required by our method have relatively large overhead.
Pre- and post-optimizations in the flow reduce such overhead by
moving mode change operations around.

4.2 Mode Change Operation
Mode change operations can be implemented using load/store in-
structions. The memory addresses used by the load/store instruc-
tions can be either stack-relative or absolute (we need as many
memory locations as the number of registers). However, using
stack-relative addresses requires that all the mode change oper-
ations for a selected AFR exist in the same function,1 which is
quite restrictive, whereas using absolute addresses allows for AFRs
whose boundaries may be distributed over multiple functions. Ab-
solute addresses may be generated using the global pointer (gp)
or, if any, constant register (e.g., r0 in the MIPS architecture). The
register used as the base address register in the load/store instruc-
tions (stack pointer, global pointer, etc.) can no longer be protected
by our optimization, which is more consequential for global pointer
than stack pointer, as stack pointer is usually more frequently ac-
cessed, and has less opportunity for RFV reduction, than the other.

Changing modes at edges of an ICFG, as opposed to doing it
in basic blocks, achieves the minimum number of mode changes
at runtime. However, implementing mode changes on edges re-
quires one more instruction—an unconditional jump—in addition
to a store/load instruction. Although unconditional jumps can be
accurately predicted by modern processors and may not cause a
significant performance penalty especially in out-of-order execu-
tion processors, the code size effect is more difficult to mitigate.
One way to remove the unconditional jumps is to convert edge in-
sertion points into node insertion points, which we do in pre- and
post-optimizations.

4.3 Inter-procedural Analysis
The purpose of our analysis is to find all the maximal AFRs in
an ICFG. Finding maximal AFRs, or finding maximally connected
subgraphs containing only access-free blocks, can be done very
efficiently using the algorithm listed in Alg. 1. To avoid recursion
the algorithm uses a “work queue” implemented as a set (nodeset).
The algorithm iterates over all the nodes once, checking if they are
already processed. If not, a node and all the connected nodes are
labeled with a new region ID, eventually partitioning all the access-
free blocks into maximal regions. The mapping from access-free
blocks to region numbers is stored inAFR. The complexity of this
algorithm isO(|E|), where |E| is the number of edges in the ICFG.

4.4 Evaluating Maximal Access-Free Regions
Mode change operations must be inserted at the boundaries of
selected AFRs except for the locations where the register is known
to be not live. Finding out whether a register is live at an outgoing
edge is easy because maximal AFRs must neighbor non-access-
free blocks, which directly give the first access (the register is live
only if it is first read after following the edge). For an incoming
edge, we do not have to check the register liveness; if it is not live,

1 To be exact, between two stack manipulation instructions, which are at the
beginning and at the end of a function.

Algorithm 1 Find all maximal access-free regions in ICFG
1: input: ICFG = (V,E)
2: output: AFR := V → {region id} : initialized to zero
3: for all n ∈ V do
4: if AFR[n] 6= 0 or n is not an access-free-block then
5: continue to the next iteration
6: end if
7: nodeset← {n}
8: id← id+ 1
9: repeat

10: m← take one from nodeset
11: AFR[m]← id
12: for all k that is a successor or predecessor of m do
13: if AFR[k] = 0 and k is access-free-block then
14: nodeset← nodeset ∪ {k}
15: end if
16: end for
17: until nodeset is empty
18: end for

it must be not live at every outgoing edge too, and the RFV of
the AFR must also be zero. If the RFV is zero, the AFR will not be
selected anyway. Once we have found all the boundary edges where
the register may be live, the code size overhead is simply twice the
number of edges (load/store + unconditional jump), and the runtime
overhead is the combined execution counts of the edges multiplied
by two. The execution counts of basic blocks and control flow
edges can be easily computed from branch probabilities, which can
be obtained from either static analysis [Wu and Larus, 1994] or
profiling.

The benefit, or RFV reduction, of selecting an AFR is the RFV
of the AFR, or

∑
i nibili, a summation over all the basic blocks

included in the AFR (ni, bi, li are the number of instructions,
the execution frequency, and the liveness of basic block i; here,
execution time is approximated with dynamic instruction count). To
avoid using li, we approximate the RFV with µ

∑
i nibi, where µ

is the probability of first seeing a read access after exiting the AFR.
This probability can be computed rather accurately, since maximal
AFR must neighbor non-access-free blocks. Note that finding µ is
very similar to finding live outgoing edges, except that we weigh
the edges according to their execution frequencies to obtain a single
number µ.

4.5 Selection Problem
Having found all the maximal AFRs for all the registers that may
be protected, the next step is to find the best ones that collectively
maximize the RFV reduction subject to the cost constraint. Let
vk, ck, tk be the RFV reduction, code size increase, and runtime
increase, respectively, of AFR k. Let xk be the binary variables
denoting that AFR k is selected (1 if selected). Then the selec-
tion problem is to maximize

∑
k(vkxk − αckxk) while satisfying∑

k tkxk < τ , which is a knapsack problem. We can use an ILP
solver to solve this problem.

Alternatively, we can use this very simple heuristic:

1. sort the AFRs in the order of decreasing (vk − αck)/tk

2. select from the top of the sorted list until their combined run-
time overhead reaches τ

4.6 Pre- and Post-optimizations
Since adding a mode change operation to an edge requires one
more instruction than adding it to a node, node insertion points are
preferred to edge insertion points. Also, if N mode change oper-

45

SS

S’

S S

S’

(a) Inward move (b) Outward move

Figure 5. Moving mode change operations from edge to node
for save operations. Solid circles represent nodes, or basic blocks
(white: mode A, gray: mode B), and dashed ovals represent selected
maximal AFRs. Thick small bars represent save operations (S:
before move, S’: after move).

ations on N different edges, sharing the same node, are replaced
by a single mode change operation on the node, we can reduce the
number of instructions to 1/2N . Thus the goal of pre- and post-
optimizations is to minimize the code size overhead while not in-
creasing the runtime or RFV of application code.

Without changing the semantics we can move mode change
operations from an edge to a node if all the incoming (or outgoing)
edges have the same mode change operation. Figure 5 illustrates
examples for save operations. Such a move does not affect the
RFV or runtime overhead of selected AFRs, but can reduce the
code size overhead significantly. As a result of a move, mode
change operations move either inside or outside an AFR, called
an inward or outward move. Inward moves can be performed for
each maximal AFR even before we make a selection, whereas
outward moves can be performed only on the selected ones. Thus
we perform inward moves before selection (pre-optimization) and
outward moves after selection (post-optimization).

5. Experiments
To evaluate the effectiveness of our compiler technique we use
applications from MiBench benchmark suite [Guthaus et al., 2001].
We compile applications using GCC 2.7.2.32 with the optimization
level specified in the benchmark suite, and simulation is done using
the SimpleScalar cycle-accurate simulator [Austin]. The proposed
compiler optimization is implemented as a post-link optimizer to be
able to handle library functions, which may play a crucial role in
determining RFV. The execution counts of basic blocks and control
flow edges are computed using a linear equation method similar
to [Chen et al., 2001] from branch probabilities obtained from
initial simulation. For the tolerance parameter we use either 1%
or 2%, which is determined on an application basis.3 For weighting
parameter α, we use 0.5Vo/Co, where Vo and Co are the RFV and
code size of the original program, respectively.

5.1 Naı̈ve Approach
For a comparison we also implement an intra-procedural optimiza-
tion based on our proposed technique, which we call naı̈ve ap-
proach. We use exactly the same flow as shown in Figure 4 ex-
cept that we do an intra-procedural analysis on a set of Control
Flow Graphs (CFGs). Finding maximal AFRs in a function can be
done very efficiently using Alg. 1, provided that function calls are
removed. We resolve a function call by replacing it with a node,
which is considered access-free only if the replaced function is

2 This is one of the latest versions supporting the SimpleScalar target.
3 The 1% tolerance was used for jpeg, dijkstra, and sha only.

0%

10%

20%

30%

40%

50%

60%

70%

Naïve

Global-gp

Global-r0

Potential

(512cyc)

(a) RFV reduction

0%

1%

2%

3%

Naïve

Global-gp

Global-r0

(b) Runtime increase

0%

5%

10%

15%

20%

25%

Naïve

w/o opt (gp)

w/ opt (gp)

w/o opt (r0)

w/ opt (r0)

(c) Code size increase

Figure 6. Comparing different approaches in terms of RFV, run-
time, and code size.

access-free. This means that we should analyze callee functions
before caller functions, or in the depth-first order of the call graph.
For recursive functions, it is easy to see that either all the func-
tions in a cycle are access-free or none at all; checking which is
the case is not a difficult problem. Exact cost and benefit estima-
tion is rather difficult for maximal AFRs derived from CFGs. Even
though we use ICFG for the evaluation step, outgoing edges may
neighbor access-free blocks in another function. In such a case, it is
not straightforward to find the exact type of the first access, which
may involve following many blocks down the control flow; instead,
we conservatively assume no-access as a read. For the addressing
mode of the mode change operations we use r0, which is expected
to be better than global pointer or stack pointer. For the selection
step our heuristic algorithm is used.

5.2 Effectiveness of Our Compiler Technique
First we compare our compiler technique with the naı̈ve approach
in terms of RFV reduction as well as runtime and code size over-
head, which is summarized in Figure 6. Note that the RFV re-
duction and runtime overhead are measured through cycle-accurate
simulation after applying optimizations to the original application
binaries. Thus the effect of extra memory accesses through in-
creased cache misses, for instance, is all accounted for. We verified
that the transformed applications have the same functionality as the
originals, which is also evidenced by the small increase in runtime.
In the first graph, we also show the potential RFV reductions, which
are obtained through profiling by accumulating the live vulnerable
intervals that are at least 512 cycles long. In the graphs, Global-
gp and Global-r0 represent our proposed technique using gp and
r0, respectively, as the base address register in mode change oper-
ations. For the results in this subsection we use our heuristic algo-

46

Table 1. Comparing ILP (I) vs. Heuristic (H)
RFV Runtime Code size overhead Time

reduction increase w/o opt w/ opt (sec)
I 32.3% 2.11% 8.6% 6.4% < 1
H 32.7% 2.05% 8.2% 4.8% < 1

rithm in the selection step; the effect of using ILP is compared in
the next subsection. Our code size reduction optimization has very
little effect on RFV or runtime; thus we show its effect only in the
third graph.

From the first graph, we see that the potential RFV reduction is
usually high, on average 47%, and up to 63% in the case of sha. Our
technique can realize most of the potential, achieving significant
RFV reduction of 33 ∼ 37% on average, and up to 66% if we use
r0 as the base register. Note that our compiler technique achiev-
ing greater RFV reduction than the potential is not a contradiction,
since the potential we use is computed at the threshold of 512 cy-
cles but can be higher if the threshold is lower. Between our meth-
ods, Global-r0 achieves higher RFV reduction, since it can perform
optimization even on the gp register. Sometimes, the missed op-
portunity translates into a lower RFV reduction as is the case with
jpeg and blowfish, but other times, for instance, in susan and dijk-
stra, Global-gp fills the gap with opportunities from other registers.
This is evidenced by the noticeable increase in runtime in those
two applications (from Global-r0 to Global-gp), which means that
Global-gp musters more smaller access-free regions to substitute
for the missing larger access-free regions from gp.

The RFV reduction by the naı̈ve approach varies greatly with
an average of 9.4%. In most applications it achieves far lower RFV
reduction than the proposed technique, with susan being the only
aberration. Application susan is special in that it is the only appli-
cation with a function that is called only once, but which accounts
for 95% of the total runtime. For such a simple call scenario, inter-
procedural analysis would not be necessary. On the other hand, in
some applications such as dijkstra, strsearch, and rijndael the RFV
reduction is almost insignificant, which is primarily because of the
“false protection effect” that the optimization tries to protect a re-
gion where the register is rarely or never vulnerable.4

The overhead of our optimization is not high, about 2% runtime
increase and 5∼ 6% code size increase on average. The third graph
shows that our technique adds far more instructions than the naı̈ve
approach, which also suggests the extensiveness of our technique.
It also demonstrates that our overhead reduction optimizations are
very effective in reducing the code size overhead; the code size
overhead is reduced consistently in all the cases, and by over 40%
on average.

5.3 ILP vs. Heuristic
Table 1 compares the two selection methods, ILP and our heuristic
algorithm. For this comparison we use gp as the base address reg-
ister. Again, the RFV and runtime numbers are from actual simu-
lations, averaged for all the applications. Overall, the quality of so-
lutions found by our heuristic is as good as that of ILP. The minute
differences between them may seem to suggest that our heuristic is
slightly better than ILP, which cannot be true. This is an artifact of
RFV dependence on runtime, ignored in our optimization frame-
work. In a bid to maximize the RFV reduction, ILP chooses the
maximum possible runtime and code size, which, however, has an
adverse effect on RFV (RFV is increased roughly by the amount

4 The false protection effect also creates the “false RFV increase” effect,
making the interval up to the store operation appear vulnerable. We have
taken care not to count such false RFV increases in all our RFV measure-
ments.

 0

 2

 4

 6

 8

 10

 12

 14

 16

<16M<4M<1M<256K<64K<16K<4K<1K<256<64<16<4

RF
V

 c
on

tri
bu

tio
n

(%
)

Length of Vulnerable Intervals (cycles)

Original
Global−gp
Global−r0

Figure 7. Comparing RFV distributions before/after the proposed
optimization.

of the runtime increase), which is why ILP does not necessarily
achieve the maximum RFV reduction in reality. The only signif-
icant difference in this comparison is on the code size overhead
after applying our overhead reduction optimizations, which tend to
work better with our heuristic algorithm. The processing time for
the selection step is less than one second per application in either
case, on a PC with 2GHz Xeon (single threaded execution) with
4GB memory.

5.4 RFV Distribution
Figure 7 shows the RFV contributions made by vulnerable intervals
of different sizes; for instance, the first point in the graph represents
that the vulnerable intervals of length 1 generates about 2.5% of the
total RFV. Thus the area under the graph represents the total RFV.
This information is collected during the simulation of the original
and modified binaries of jpeg. The initial goal stated in Introduction
was to remove all the RFV components of 512 cycles or more. The
graph shows that our methods can achieve the goal, successfully
filtering out most of the long-interval RFV components while leav-
ing intact the short-interval RFV components. However there are
some intervals especially in the 64K ∼ 256K range, which could
not be identified or protected for some reason. We leave finding a
low-cost solution to protect even such intervals to future work.

6. Related Work
Many techniques exist that share the same goal with our work,
of protecting register files from soft errors. First, there are hard-
ware techniques [Blome et al., 2006, Kandala et al., 2007, Memik
et al., 2005, Montesinos et al., 2007, Slegel et al., 1999], which
protect registers using ECC, parity, or duplication, without neces-
sary support from compiler or other software. Since providing full
hardware protection for the entire RF has extremely high overhead,
many cost-effective solutions [Blome et al., 2006, Memik et al.,
2005, Montesinos et al., 2007] protect only part of the RF, with
the decision of which variables to protect being made in hardware.
Second, there are compiler-hardware hybrids [Lee and Shrivastava,
2009a, Yan and Zhang, 2005], which use compiler for the deci-
sion of what-to-protect, thus eliminating the overhead of hardware
decision and/or improving the quality of decisions using compile-
time analysis. The third category is pure-compiler solutions, of
which we are aware of only one previous technique. Yan and Zhang
[2005] proposes an instruction scheduling that tries to reduce the
distance between loads and stores in a bid to lower RFV. The re-
duced distance between a load (which is a write) and a store (which
is a read) translates into reduced RFV, which is, however, bounded

47

by the size of the block in which instruction scheduling is done.
Thus, not only instruction scheduling is only a local optimization,
the scope of it is also limited by the size of the block, which can-
not be as large as a whole function or multiple functions unlike
in our approach. As a result, their instruction scheduling generates
mixed results, increasing RFV in 50% of the cases. But in the other
cases where the instruction scheduling can reduce the RFV, our
technique can be applied on top of the instruction scheduling, since
they work at different granularities. Finally, there are software tech-
niques such as code duplication [Oh et al., 2002b, Reis et al., 2005]
and control flow checking [Oh et al., 2002a], which are different
from the above approaches in that they achieve reliability through
software redundancy [Koren and Krishna, 2007] rather than space
redundancy (e.g., register duplication) or information redundancy
(e.g., ECC and parity).

The concept of vulnerability was first introduced as Architec-
tural Vulnerability Factor (AVF) by Mukherjee et al. [2003], which
is a quantitative measure of the amount of “live” information that
needs protection of each microarchitectural component. The vul-
nerability measure is used in nearly all cost-effective soft error mit-
igation techniques at the architecture level and above to approxi-
mate the probability of soft errors. Techniques have been proposed
to compute AVF during simulation [Mukherjee et al., 2003], or
estimate it at runtime [Li et al., 2008, Walcott et al., 2007] or at
compile-time [Lee and Shrivastava, 2009b].

This work shares some insights with partially protected RF tech-
niques though they are different in many aspects including the
constraints and the mechanisms to achieve vulnerability reduc-
tion. With partially protected RFs, it proved to be key for cost-
effectiveness, to treat register variables differently depending on
their live lengths, in both hardware approaches [Montesinos et al.,
2007] and our earlier work on compiler-hardware hybrids [Lee and
Shrivastava, 2009a]. In this approach, however, since a live range
can consist of multiple vulnerable intervals, we look more finely at
the vulnerable intervals, treating them differently to maximize the
efficiency of our compiler optimization.

For a more complete comparison, it is worthwhile to consider
reducing the number of registers used during compilation. Reduc-
ing the number of registers used may reduce the overall liveness
of registers, and thus the total RFV. And it can be done rather eas-
ily, with gcc for instance, using compiler switches specifying what
registers must not be used. However, recompiling applications with
fewer registers has several limitations. First only certain registers
can be disallowed such as t-registers and s-registers. Special reg-
isters such as global/stack/frame pointers, and argument and re-
turn value registers, are outside the scope. Second there are only
a certain number of choices to choose from, and there is no control
or estimation of exactly how much impact the choice will make
on vulnerability, code size, and performace. This is very different
from our approach, which can control the performance penalty with
maximum RFV reduction.

7. Conclusion
This paper presents a case for a pure compiler approach to re-
ducing soft errors in processor register files. Unlike in perfor-
mance optimization, optimizing for reliability necessitates a global
approach—optimizing only kernels without the knowledge of
global consequences may result in extremely poor results. To pro-
vide a quantitative answer to the question of how effective a pure
compiler approach can be, we formulated an optimization problem,
turned it into a graph partitioning one, and proposed an efficient
heuristic solution based on access-free regions. Our experiments
on a number of embedded applications demonstrate that our tech-
nique can reduce RFV very effectively, by 33 ∼ 37% on average
and up to 66%, at a nominal 2% performance overhead, which is far

better than an intra-procedural approach, and approaches the po-
tential maximum. Also, our overhead reduction optimizations can
successfully reduce the code size overhead, cutting it by more than
40%, to a mere 5∼ 6% compared to the original, highly optimized
binaries. One limitation of our technique is that it uses only the
maximal access-free regions as candidates for protection. While
exploring all the subsets of maximal access-free regions is clearly
intractable, we intend to apply heuristics from graph partitioning
approaches to this problem in the near future.

Acknowledgments
This work was partially supported by Raytheon, Stardust Founda-
tion, and the Korea Research Foundation Grant (KRF-2007-357-
D00225) funded by the Korean Government (MOEHRD). The au-
thors also would like to thank members of Compilers and Microar-
chitecture Lab (CML) for their valuable support in this work.

References
Todd Austin. SimpleScalar LLC. URL
http://www.simplescalar.com/.

Jason A. Blome, Shantanu Gupta, Shuguang Feng, and Scott
Mahlke. Cost-efficient soft error protection for embedded mi-
croprocessors. In CASES ’06, pages 421–431, 2006.

Kaiyu Chen, Sharad Malik, and David I. August. Retargetable
static timing analysis for embedded software. In ISSS ’01, pages
39–44, 2001.

M. Garey and D. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

M. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. Mibench: A free, commercially representative
embedded benchmark suite. In IWWC, pages 3–14, 2001.

M. Harrold, G. Rothermel, and S. Sinha. Computation of interpro-
cedural control dependence. In Proc. ACM SIGSOFT Int’l Symp.
on Software Testing and Analysis, pages 11–20, 1998.

ITRS. International technology roadmap for semiconductors 2007
executive summary. URL http://www.itrs.net/.

M. Kandala, W. Zhang, and L. Yang. An area-efficient approach
to improving register file reliability against transient errors. In
Proc. Int’l Conf. on Advanced Information Networking and Ap-
plications Workshops, pages 798–803, 2007.

B. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. Bell System Tech. Journal, 49:291–307,
February 1970.

Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. Morgan
Kaufmann Publishers, 2007.

Jongeun Lee and Aviral Shrivastava. Compiler-managed register
file protection for energy-efficient soft error reduction. In Pro-
ceedings of Asia and South Pacific Design Automation Confer-
ence, pages 618–623, 2009a.

Jongeun Lee and Aviral Shrivastava. Static analysis to mitigate soft
errors in register files. In Proc. Int’l Conf. Design Automation
and Test in Europe (DATE), 2009b.

Xiaodong Li, Sarita V. Adve, Pradip Bose, and Jude A. Rivers.
Online estimation of architectural vulnerability factor for soft
errors. SIGARCH Comput. Archit. News, 36(3):341–352, 2008.

G. Memik, M. H. Chowdhury, A. Mallik, and Y. I. Ismail. En-
gineering over-clocking: reliability-performance trade-offs for
high-performance register files. Proc. Int’l Conf. on Dependable
Systems and Networks, 2005.

48

Subhasish Mitra, Norbert Seifert, Ming Zhang, Quan Shi, and
Kee Sup Kim. Robust system design with built-in soft-error re-
silience. IEEE Computer, 38(2):43–52, 2005.

Pablo Montesinos, Wei Liu, and Josep Torrellas. Using register
lifetime predictions to protect register files against soft errors.
In DSN ’07, pages 286–296, 2007.

Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer,
Steven K. Reinhardt, and Todd Austin. A systematic methodol-
ogy to compute the architectural vulnerability factors for a high-
performance microprocessor. In Proc. International Symposium
on Microarchitecture, Dec 2003.

Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey.
Control-flow checking by software signatures. IEEE Transac-
tions on Reliability, 51:111–122, 2002a.

Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error
detection by duplicated instructions in super-scalar processors.
IEEE Transactions on Reliability, 51:63–75, 2002b.

George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan,
and David I. August. SWIFT: Software implemented fault
tolerance. In Int’l Symp. Code Generation and Optimization,
pages 243–254, 2005.

Aviral Shrivastava, Eugene Earlie, Nikil D. Dutt, and Alexandru
Nicolau. Operation tables for scheduling in the presence of
incomplete bypassing. In CODES+ISSS, pages 194–199, 2004.

K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitec-
ture. In Proc. Int’l Symp. on Computer Architecture, pages 2–13,
2003.

Timothy J. Slegel, Robert M. III Averill, Mark A. Check, Bruce C.
Giamei, Barry W. Krumm, Christopher A. Krygowski, Wen H.
Li, John S. Liptay, John D. MacDougall, Thomas J. McPher-
son, Jennifer A. Navarro, Eric M. Schwarz, Kevin Shum, and
Charles F. Webb. IBM’s S/390 G5 microprocessor design. IEEE
Micro, 19(2):12–23, 1999.

Kristen R. Walcott, Greg Humphreys, and Sudhanva Gurumurthi.
Dynamic prediction of architectural vulnerability from microar-
chitectural state. SIGARCH CA News, (2):516–527, 2007.

Youfeng Wu and James Larus. Static branch frequency and pro-
gram profile analysis. In MICRO 27, pages 1–11, 1994.

Jun Yan and Wei Zhang. Compiler-guided register reliability im-
provement against soft errors. In EMSOFT ’05, pages 203–209,
2005.

K. C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE
Micro, 1996.

49

