
A Software Solution for Dynamic Stack Management on Scratch Pad Memory ∗

Arun Kannan, Aviral Shrivastava, Amit Pabalkar and Jong-eun Lee
Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85281, USA

{arun.kannan, aviral.shrivastava, amit.pabalkar, jongeun.lee}@asu.edu

Abstract— In an effort to make processors more power effi-
cient scratch pad memory (SPM) have been proposed instead of
caches, which can consume majority of processor power. How-
ever, application mapping on SPMs remain a challenge. We pro-
pose a dynamic SPM management scheme for program stack data
for processor power reduction. As opposed to previous efforts, our
solution does not mandate any hardware changes, does not need
profile information, and SPM size at compile-time, and seamlessly
integrates support for recursive functions. Our technique man-
ages stack frames on SPM using a scratch pad memory manager
(SPMM), integrated into the application binary by the compiler.
Our experiments on benchmarks from MiBench [15] show aver-
age energy savings of 37% along with a performance improvement
of 18%.

I. INTRODUCTION

Power consumption is a serious concern in all comput-
ing systems ranging from embedded systems to large server
farms. Battery operated embedded devices need to be ex-
tremely power efficient for longer operation times, whereas
server farms need to reduce their cooling costs. Caches may
consume very significant portion of the processor power. Even
the StrongARM 110 consumes about 45% of the processor
power [1]. More disturbing is the trend of rapidly increasing
leakage power of the cache [3].

Due to the aforementioned problems, the use of alternative
low-latency, low-power, on-chip memory known as Scratch
Pad Memory (SPM) has become very popular. Unlike the
cache, SPMs do not have tag array and comparator logic, and
are consequently extremely power efficient. Banakar, Steinke,
Lee, Balakrishnan and Marwedel [1] observed that SPMs con-
sume about 40% less power, and occupy 34% less area as com-
pared to cache of similar capacity. The latest multi-core Cell
architecture from IBM employs SPM as the working memory
for its low-power synergistic processor units. Network Proces-
sors like the Intel IXP1200 also rely on SPMs in their micro-
engines for power-efficient processing [17].

However, the advantages of using SPM come with new set
of challenges. In SPMs, data transfers to/from memory have
to be explicitly managed by the application. This is challeng-
ing, as it may not be possible to predict the data access pattern
at compile-time due to the inherently dynamic nature of pro-
grams. In order to maximize the power gains by using SPM, it
is essential to map data objects that are most frequently refer-

∗This work is partially supported by grants from Microsoft, Raytheon and
Stardust Foundation.

enced to the SPM. Stack data has been identified as one of the
most promising candidate to map to the SPM. Stack data enjoys
an average of 64.29% of total data accesses for the embedded
applications in the Mibench [15] suite.

Mapping data onto SPM is known to be NP-complete. Early
techniques proposed static data mapping of stack variables onto
SPM [9, 10]. However, in static mapping techniques, the data
mapping does not change with time, and hence they are un-
able to exploit the dynamically changing data access pattern
of program. Consequently, dynamic mapping techniques were
proposed. However, most dynamic mapping techniques are
profile-based [4, 10, 6, 8]. The use of profile limits their scope
of application, not only because of the difficulty in obtain-
ing reasonable profiles, but also due to high space and time
requirements to generate a profile. Techniques that do not
require profile information are preferred; however, there are
only a few profile-independent dynamic mapping techniques
for SPM. One of them [5] uses static analysis to minimize data
transfers between SPM and external memory, but they concen-
trate on only array data structures and increase re-use in SPM
using source transformations. This approach, though effective
works well only in well structured kernels of code. Work in [2]
requires hardware support, which in turn again reduces their
applicability.

While static analysis-based, profile-independent dynamic
mapping techniques for SPMs are desirable, the challenge is
to achieve significant power and performance improvements
using them. In this paper, we propose a complete software
solution, for dynamic management of SPM, and does not re-
quire profile information. Unlike previous approaches, except
for [2, 11], our solution does not require the SPM size until run-
time, thus giving the advantage of binary compatibility. Our
approach to map stack data on the SPM is to manage the active
stack frames in a circular fashion. The application is enhanced
with a software SPM manager at compile-time. When the SPM
is filled and unable to accommodate the stack frame for a new
function call, a software manager makes space by evicting the
oldest frame at the beginning of the SPM to off-chip memory.
We achieve an average of 32% reduction in energy with this
technique with an average performance improvement of 13%.

Although effective, the SPM manager overhead can be sig-
nificant in some cases due to the SPM manager calls before
each function invocation. We use static analysis to reduce these
calls by grouping them. This optimization reduces the soft-
ware overhead and achieves an average energy reduction of
37% with an average performance improvement of 18%.



SPM

Static Dynamic

Profile-based Non-Profile

Hardware Software

Fig. 1. Classification of Previous Work

II. RELATED WORK

Banakar, Steinke, Lee, Balakrishnan and Marwedel [1] pro-
vide a comprehensive comparison between caches and scratch
pad memories. They demonstrate SPM as an energy efficient
alternative to cache and report a performance improvement of
18% with a 34% reduction in area. Fig. 1 shows a taxonomy of
the SPM mapping techniques.

All the existing work on SPM mapping can be classified as
static and dynamic techniques. Static techniques map certain
data objects to the SPM and the contents of SPM remain con-
stant throughout the execution of the program. Dynamic tech-
niques, however, adapt themselves to the changing data access
patterns of a program and can change the contents of SPM de-
pending upon the point of execution. It is no surprise that the
dynamic techniques in [4, 5, 6, 8] outperform the static tech-
niques in [9, 10].

We can further classify the dynamic methods into profile-
based and non-profile methods. Stack management has been
studied in few works [4, 8] using profile based techniques.
Udayakumaran and Barua [4] propose a dynamic technique to
map global and stack data to SPM. They perform a profile anal-
ysis on the application and use it to propose an ILP as well as a
heuristic solution. However, the profile may heavily depend on
the input data. The profile based techniques discussed above
are proposed to be built into the compiler. It should be noted
that getting profile data before every compilation will not only
increase complexity of compilation, but also may be infeasible
in terms of time. Thus, there is a need for profile-independent
techniques to for a scalable and feasible SPM mapping solu-
tion. Our technique does not depend on profiling and thus can
scale well for any size of application. Moreover, all the works
using profiling information, except [11] need to know the SPM
size at compile-time restricting their binary compatibility. On
the other hand, our technique does not need the SPM size in-
formation until run-time. Also, these methods are unable to
handle recursive functions and are forced to spill them to the
off-chip memory. This can be a deterrent in target architec-
tures similar to the Cell SPE [18], TI MSP430 which requires
the code or data to be brought into the SPM before accessing
it. Our SPM management technique works well even on this
architecture and seamlessly handles recursive as well as non-
recursive functions on SPM.

Work in [2, 6, 7] perform SPM mapping in systems with
hardware support from MMU. Our work is inspired from the
approach in [2], where the authors modify the MMU permis-
sion fault handler to perform circular stack management. But,

the hardware approach works only on systems with MMU lim-
iting its flexibility. This method uses the access permission bits
of a page to perform its management. This raises security con-
cerns as any malicious application can take undue advantage
of this management technique to get access to other processes.
In [6], stack pages are managed based on profile information
and modifying the page fault handler of MMU to bring pages
to SPM on demand. Though the hardware techniques show
promise, they lack the flexibility and ease of implementation,
since they need architectural modification.

Thus, there is a need for developing SPM mapping tech-
niques which are dynamic, profile-independent and built in
software. Our technique is a dynamic, profile-independent,
pure-software technique which ensures a feasible and scalable
solution to the problem of stack data mapping. We present our
approach in the next section followed by analysis and experi-
mental results.

III. CIRCULAR MANAGEMENT OF STACK

Our focus is to keep the active stack data on the SPM. In
order to keep the book-keeping overhead to a minimum, we
consider stack data at the granularity of function stack frames.
At first, this may seem too coarse, but we demonstrate signifi-
cant power-performance savings even at this level.

We will consider a small toy program to explain our tech-
nique. Let us consider an SPM of size 128 bytes. Table I
shows the stack frame sizes for all the functions in the program
and the call graph is shown in Fig. 2. Assuming an upward
growing (in address) stack, the stack state after the call to F3()
is depicted in Fig. 3(a). It can be seen that in this example,
the stack space requirement of our toy program is much larger
than the available SPM size. In order to make room for the
stack frame for function F4(), we evict the oldest frame in the
SPM to the SDRAM. This decision is facilitated by the natural
growth order of call stack. We can evict only the number of
bytes required to accommodate the new frame. But, then we
have to keep track of all such partial frames. It can also happen
that there is insufficient space at the bottom to accommodate a
new frame. In such an event, one would think of allocating the
frame partially in the remaining space at the bottom and place
the rest from the top of SPM. However, this is not possible as
the stack management is done at run-time whereas the code has
already resolved references to the stack objects with respect to
the frame pointer. Thus, we choose to perform eviction at frame
level and keep the management overhead to a minimum. The
evicted frames are kept in stack order in a designated SDRAM
location. Fig. 3(b) shows the state of stack after eviction of the
older frames. Similarly, on the return path, when F3 returns,
the evicted frames i.e. F1 and F2 need to be brought back from
SDRAM into the SPM at their previous location. The move-
ment of data between the SDRAM and SPM is performed in
software. Future implementations will incorporate the transfer
by means of DMA.

The management of stack is performed by software SPM
Manager (SPMM). The main function of SPMM is to monitor
possible overflow and accommodate new frames in the given
SPM. It is essential for the SPMM to keep track of the old-
est frame at any point in time inside the SPM (shown by old



TABLE I
STACK FRAME SIZES FOR SAMPLE PROGRAM

Function Frame Size(Bytes)
F1 28
F2 40
F3 60
F4 54

F1

F2

F3

F4

Fig. 2. Sample program call graph

pointer) to start eviction from that frame. This software library
is highly optimized and is linked with the application.

The SPMM uses a function table containing function ad-
dresses and their stack frame sizes generated at compile time.
The SPMM can obtain the SPM size from the target system at
run-time. The application can thus be supported by the SPMM
on any SPM size without the need of re-compilation. The SPM
manager library calls are inserted by the compiler in pairs, be-
fore and after each function call as shown in Fig. 4.

The SPMM call to spmm check in(F2) is necessary to check
if there is space available for F2 and handle a possible over-
flow required to accommodate it. When F2() returns, it is
necessary for the SPMM to verify that the call returns to a
valid stack frame. For example, if we consider the SPM state
shown in Fig. 3(b), if F3() simply returns, the stack pointer
will point to corrupt data. Thus, a check is made inside the
spmm check out(F2) to detect this situation and fetch the old
stack frames from external memory.

The SPMM functions need stack space for their own exe-
cution. This is allocated in a reserved area of the SPM. The
manager is carefully implemented without using any standard
library calls to ensure minimal stack space overhead. Assembly
code is inserted as shown to switch the stack pointer between
the prog and mgr stack areas between these calls.

IV. REDUCTION OF SPM MANAGER CALL OVERHEAD

The previous section describes the core functionality of the
SPM manager in maintaining the active stack of an application
on SPM. The SPM Manager data is mapped permanently to a
reserved portion of the SPM to reduce performance overhead.
Even so, using the circular management of stack may lead to
a performance overhead due to the extra manager library calls
before and after each user function call as shown in Fig. 4. But,
there are opportunities to reduce these overheads by examining
the call and control flow of the application.

F1

F2

F3

Old 0

28

68

128

(a) Stack before eviction

F4

F3

Old

0

54

68

128

(b) Stack after eviction

Fig. 3. Stack state for sample program

<asm switch to mgr stack>
spmm_check_in(F2); 
<asm switch to prog stack> 
F2();
<asm switch to mgr stack> 
spmm_check_out(F2); 
<asm switch to prog stack> 

Fig. 4. Library calls inserted in application

A. Opportunities

We use the sample program shown in Fig. 5(a) to elucidate
the optimization. Using the SPMM technique requires a man-
ager call pair to be inserted around each function call. We
would like to reduce the total number of manager calls by con-
solidating them for a group of functions. For example, if we
consider F4, it has a nested call to F6. Here, it is possible to
avoid inserting a separate manager call around F6, if we can
request the space for F6 in the manager call for F4. In this
case, the requested stack space will be equal to the requirement
of (F4+F6). Another opportunity can be seen in F1 where F3
and F4 are always called in sequence. Here, instead of making
multiple manager calls for F3 and F4, we can insert a single call
pair around F3 and F4 together, requesting for a stack space of
max(F3, F4). Loops in the program also give an opportunity to
avoid repeated manager calls. Since F3 and F4 are executed in
a loop, it is possible to make the manager call outside the loop
construct.

It can be seen how it is possible to chain these individual op-
timizations to considerably reduce the manager call overhead.
We introduce a novel data structure called Global Call Con-
trol Flow Graph to perform this analysis. The GCCFG is an
extension to the standard control flow graph (CFG). It is a di-
rected graph G = (V,U,E), where an F-node v ε V represents
a function, an L-node u ε U represents a loop and a directed
edge e ε E in V

⋃
U represents a function call or a nested

loop. It is constructed in two simple steps. Firstly, a CFG is
constructed for each function. Then, the loop headers and loop
branches are identified to form the L-Nodes in the graph. For
conditional statements, it is assumed that both paths will be ex-
ecuted. Recursion can be detected while constructing the graph
and is indicated by a self-loop on the F-node. Finally, the CFGs
are combined to form a single graph representing both, the call
and control flow information of the application. Fig. 5(b) shows
a GCCFG for the sample program.



F1() { 
F2(); 
for { 

F3();
F4();

}
F(5);

}

F5() {
if(…){

F5();
}

}

F4() {
F6();

}

(a) Sample program

F5F5

F1F1

F2F2 L1L1

F3F3 F4F4

F6F6

(b) GCCFG for sample program

Fig. 5. Global Call Control Flow Graph (GCCFG)

B. Manager Call Consolidation

Now that we have identified the circumstances in which op-
timization is possible, we outline an algorithm which will sys-
tematically explore the GCCFG and insert the manager calls
only where absolutely necessary. Each node v ε V , u ε U stores
some information required to statically analyze the code and
traverse the GCCFG. The members comprising each node are
explained below:

• nodeType - This field indicates if the node is an F-node or
an L-node.

• frameSize - This gives the stack frame size for F-nodes.
This field has a value of ‘0’ for L-node.

• requestSize - This field is populated by the call reduc-
tion analysis. It holds the stack size to be requested from
SPMM in the presence of optimizations.

• parent - This field holds a pointer to the parent F-node.
In case of nested loops, the parent will be the containing
function.

• recursive - This flag is set if the F-node is recursive. It is
ignored for L-nodes.

• start - This field holds the start address for F-nodes during
static analysis.

• children - This field holds the list of children F-nodes/L-
nodes in call order.

In order to perform the manager call consolidation, we ex-
plore the GCCFG in a depth-first fashion (done by the routine
Consolidate). Starting from the leaf functions we check to see
if any of the aforementioned optimizations are possible and if
so, fill the requestSize field. It must be noted that each call
instance of the same function may be optimized differently de-
pending upon its parent and siblings. But, the optimization
inside a particular function will be performed once, when the
graph first explores the function and will remain constant there-
after. Once the GCCFG exploration is complete, the request-
Size field of each node indicates the action to be taken as shown
in Table II.

We can now insert the appropriate manager calls by explor-
ing each of the GCCFG nodes for the requestSize field. The
exploration always starts at the F-node representing the emph-
main function of the application. The algorithm for the man-
ager call consolidation is shown in Algorithm 1, 2 and 3.

The routine ComputeStackReq computes the maximum stack
space required by children of a node. This information is used
by the routine Classify to check if the given size of SPM can
hold both, the node and its children’s stack in the available

TABLE II
GCCFG REQUEST SIZE FIELD

Value of requestSize Action

= 0 Insert manager call
before this node

using frameSize value
(applies only to F-nodes)

> 0 Insert manager call
before this node

using requestSize value
= −1 Do not insert manager call

Algorithm 1 Consolidate (Vf )
1: for all children, Vi ε children(Vf ) do
2: Consolidate(Vi)
3: end for
4: Classify(Vi)

space. The conditional statement in step 4 and step 11 of Clas-
sify checks to see if there is enough space either before or af-
ter the parent function. This is important as any optimization
should not end up requiring eviction of its immediate parent’s
stack frame.

To understand this, let us go back to the sample program in
Fig. 5(a). Consider that there are a few statements between F3
and F4 which access F1’s stack frame. Now, if the consoli-
dation of manager calls to F3 and F4 lead to eviction of the
stack frame of F1, the program will access corrupt stack data
when executing the statements between F3 and F4. This does
not happen in the un-optimized case, as we call the manager
immediately after returning from F3. Here, if the stack frame
of F1 was evicted, the manager would fetch it from external
memory before proceeding ahead.

In the event that the maximum program stack requirement is
less than the SPM size, the algorithm would suggest insertion
of only one consolidated manager call at the main function.
Thus, for such cases, the SPM manager overhead is at its min-
imum. Since this analysis is carried out at compile time, it is
not possible to optimize for recursive functions as the depth of
recursion may vary with program input. We therefore leave the
recursive functions un-optimized.

V. EXPERIMENTS

A. Experimental Setup

We use the cycle-accurate SimpleScalar simulator [16] to
model an architecture without a cache, but consisting of an
SPM and an external SDRAM memory. The processor uses the
ARMV5TE ISA [12]. The static analysis algorithm is imple-
mented as a pass during the compilation. We use the MiBench
suite [15] of embedded applications to demonstrate the effec-
tiveness of our technique.



Algorithm 2 Classify (Vf )
1: ComputeStackReq(Vf )
2: if nodeType(Vf ) is L-Node then
3: Find parent F-node Vp for Vf

4: if (condition)† then
5: requestSize(Vf ) = stackReq
6: for all F/L-Nodes, Vi ε children(Vf ) do
7: requestSize(Vi) = −1
8: end for
9: end if

10: else if nodeType(Vf ) is F-Node then
11: if (condition)† then
12: requestSize(Vf ) = frameSize(Vf ) + stackReq
13: for all F/L-Nodes, Vi ε children(Vf ) do
14: requestSize(Vi) = −1
15: end for
16: end if
17: end if
†Check to see if there is enough space for the children function(s) either before

or after the parent function in SPM.

Algorithm 3 ComputeStackReq (Vf )
1: stackReq = 0
2: for all F/L-Nodes, Vi ε Vf do
3: if recursive(Vi) is TRUE then
4: stackReq = SPMSize
5: break
6: end if
7: if requestSize(Vi) > 0 then
8: size = requestSize(Vi)
9: else

10: size = frameSize(Vi)
11: end if
12: stackReq = max{stackReq,size}
13: end for
14: if stackReq = 0 then
15: stackReq = SPMSize
16: end if

B. Energy Models

We use the CACTI tool [13] for the SPM energy model with
0.13µ technology. For an SPM of size 1k, the energy per
read (ESPM/RD) and write (ESPM/WR) access are 0.33nJ and
0.13nJ respectively. It should be noted that the per access en-
ergy increases with SPM size. The external memory energy
model is for a 64MB Samsung K4X51163PC SDRAM [14].
The energy per read burst(ESDR/RD) for the SDRAM is 3.3nJ,
whereas, a write burst(ESDR/WR) is 1.69nJ. The following
equations are used to calculate energy consumed:

ETOTAL = ESPM−TOTAL + ESDR−TOTAL

ESPM−TOTAL = (NRD ∗ ESPM/RD) + (NWR ∗ ESPM/WR)

ESDR−TOTAL = (NSDR−RD ∗ ESDR/RD) +

(NSDR−WR ∗ ESDR/WR)

N
o

rm
al

iz
ed

En
er

gy
 R

ed
u

ct
io

n
 (

%
)

0

20

40

60

80

100

120

SPMM

GCCFG

Baseline

Fig. 6. Normalized energy reduction

VI. RESULTS AND ANALYSIS

We evaluate the effectiveness of the circular stack manage-
ment technique and the consolidation algorithm by comparing
the energy consumption and performance improvement for (i)
system with only SDRAM, 1k cache (Baseline) (ii) system with
SPM and circular stack management (SPMM) and (iii) sys-
tem with optimized circular stack management (GCCFG). The
SPM sizes for each benchmark are chosen such that they are at
least as much as the largest function stack frame in the bench-
mark. Since we manage stack data at the frame granularity, our
technique is unable to handle stack frames of sizes greater than
given SPM size. This limitation will be addressed in the future.
Fig. 6 shows the normalized energy reduction obtained for the
benchmarks.

The average reduction in energy using SPMM against the
Baseline is 32% with a maximum energy reduction of 49% for
the SHA benchmark. The dynamic profiling based technique
in [8] focuses on mapping recursive stack data to SPM and
achieves an average reduction in energy of 31.1%. It should be
noted that the authors suggest taking multiple profiles and aver-
aging them in order to reduce profile dependence. In contrast,
we achieve 32% energy savings by simply managing the en-
tire stack from SPM seamlessly for recursive and non-recursive
functions without the time-consuming profiling process. Also,
our solution does not require the SPM size knowledge till run-
time making it binary compatible.

We improve upon our results further by reducing the SPM
manager calls using the consolidation algorithm. We observe
a further energy reduction of a maximum 9% for Blowfish.
The Blowfish benchmark contains many nested function calls
within loop structures making it a good candidate for optimiza-
tion using our consolidation algorithm. It should be noted
that the GCCFG consolidation reduces only the SPM man-
ager call overheads while the data movement between SPM and
SDRAM in case of overflows remains constant. Call consolida-
tion causes evictions to occur in bigger chunks. This happens
so, because the manager may allocate and de-allocate stack
space for groups of functions rather than individual functions.
The SPM manager function table is accessed from SDRAM
whereas only a limited set of manager data objects are kept in
SPM. This is done to keep a minimal space overhead in SPM.
The overhead of the SPM Manager is well compensated for by



N
o

rm
al

iz
ed

Pe
rf

o
rm

an
ce

 O
ve

rh
ea

d
(%

)

0

20

40

60

80

100

120

SPMM

GCCFG

Baseline

Fig. 7. Normalized performance overhead

the reduction in total number of SDRAM accesses.
The performance trends shown in Figure 7 are normalized

with the Baseline case. It is important to note that the perfor-
mance obtained using the Baseline system is 16x better than
a system without any on-chip memory. In case of processors
which only have an SPM and no cache, our technique is ex-
tremely beneficial for performance as well as power.

We observe an average performance improvement of 13%
for SPMM technique with a maximum improvement of 34%
for Blowfish-Decryption. It is interesting to note that the hard-
ware assisted circular stack management in [2] achieves a sim-
ilar performance improvement. But, our solution does not re-
quire any hardware support and can be ported to any architec-
ture using SPM. We observed performance degradation up to
6% in the SHA and JPEG benchmarks. But, the manager call
consolidation algorithm completely eliminates this degradation
and results in further average performance improvement of 5%.

Most existing techniques [4, 9, 6] examine the profile infor-
mation of stack data and formulate an ILP solution to essen-
tially search the huge space of all possible data mappings and
schedules to find out the best data mapping and schedule for
SPM. This is an extremely complex problem. In contrast, our
technique simply manages the SPM to follow the natural ac-
cess pattern of stack data. Even after losing all the flexibility of
data mapping, our solution achieves similar energy reduction.

VII. CONCLUSION

We proposed a simple, yet effective dynamic circular stack
management scheme which does not require system SPM size
at compile-time. We also proposed a static analysis method
to reduce the software overhead and gained average energy re-
duction of 37% with an average performance improvement of
18%. The stack management demonstrated is not restricted to
cache-less architectures and can also be used in general pur-
pose systems and scales well with application size.

The solution presented is promising as there is a clear
need, but lack of SPM mapping techniques which are dy-
namic, profile-independent, pure software and binary compat-
ible. There are many interesting dimensions to extend this
method. When the stack frame size is greater than SPM itself,
the function stack cannot be brought into the stack and needs to

be used from the main memory. We will investigate approaches
to break the function stack and bring it into the SPM in parts.
In addition, stack accesses to data in another function’s stack
frames (typically using pointers) is an important problem to
tackle.

REFERENCES

[1] R. Banakar, S. Steinke, B. Lee, M. Balakrishnan and P. Marwedel,
“Scratchpad memory: design alternative for cache on-chip memory in
embedded systems,” CODES ’02: Proceedings of the Tenth International
Symposium on Hardware/Software Codesign, pages 73–78, 2002.

[2] S. Park, H. Park and S. Ha, “A novel technique to use scratch-pad memory
for stack management,” DATE ’07: Proceedings of the Conference on
Design, Automation and Test in Europe, pages 1478–1483, 2007.

[3] Y. Meng, T. Sherwood and R. Kastner, “Exploring the limits of leakage
power reduction in caches,” ACM Trans. Archit. Code Optim., pages 221–
246, 2005.

[4] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory al-
location for scratch-pad based embedded systems,” CASES ’03: Proceed-
ings of the 2003 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, pages 276–286, 2003.

[5] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif and
A. Parikh, “Dynamic management of scratch-pad memory space,” DAC
’01: Proceedings of the 38th Conference on Design Automation, pages
690–695, 2001.

[6] H. Cho, B. Egger, J. Lee and H. Shin, “Dynamic data scratchpad memory
management for a memory subsystem with an MMU,” SIGPLAN Not.,
pages 195–206, 2007.

[7] B. Egger, C. Kim, C. Jang, Y. Nam, J. Lee and S. Min, “A dynamic
code placement technique for scratchpad memory using postpass opti-
mization,” CASES ’06: Proceedings of the 2006 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems, pages
223–233, 2006.

[8] A. Dominguez, N. Nguyen and R.K. Barua, “Recursive function data al-
location to scratch-pad memory,” CASES ’07: Proceedings of the 2007
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 65–74, 2007.

[9] O. Avissar, R. Barua and D. Stewart, “An optimal memory allocation
scheme for scratch-pad-based embedded systems,” Trans. on Embedded
Computing Sys., pages 6–26, 2002.

[10] M. Verma, S. Steinke and P. Marwedel, “Data partitioning for maximal
scratchpad usage,” ASPDAC: Proceedings of the 2003 Conference on Asia
South Pacific Design Automation, pages 77–83, 2003.

[11] N. Nguyen, A. Dominguez and R. Barua, “Memory allocation for em-
bedded systems with a compile-time-unknown scratch-pad size,” CASES
’05: Proceedings of the 2005 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems, pages 115–125, 2005.

[12] ARM, “ARM926EJ-S Technical Reference Manual,”
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0198d/DDI0198
926 TRM.pdf.

[13] P. Shivakumar and N.P. Jouppi, CACTI 3.2,
http://www.hpl.hp.com/research/cacti/.

[14] Samsung K4X51163PC Mobile DDR Synchronous DRAM,
http://www.samsung.com/products/semiconductor/MobileSDRAM/2005.

[15] MiBench Suite, http://www.eecs.umich.edu/mibench/.

[16] T. Austin, SimpleScalar LLC, http://www.simplescalar.com/.

[17] Intel IXP1200 Family of Network Processors - Product line,
http://www.intel.com/design/network/products/npfamily/ixp1200.htm

[18] The Cell project at IBM Research, http://www.research.ibm.com/cell/.


