Introduction

- The ability to monitor, inform, and assess the quality of everyday movements plays an important role in several health-care applications.
- Recent studies suggest that the most efficient movement between two poses, in certain well defined cases, is often the geodesic path in the pose-space [1, 2].
- We propose an unsupervised method to model the deviation of a given trajectory w.r.t. an ideal path on a pose-space as a measure of quality.

Two different pose-spaces were used to demonstrate this idea:

1. \(S^1 \times S^1 \) to model the interaction of two joint angles
2. \(\mathcal{SE}(3) \times \mathcal{SE}(3) \) to model the movement of two joints

Mathematical Preliminaries

1. **Body-joint angles on** \(S^1 \times S^1 \):
 - Distance between two body-joint angles \(\theta_1 \) and \(\theta_2 \) on circle \(S^1 \):
 \[
 d_{S^1}(\theta_1, \theta_2) = \arccos(\cos(\theta_1 - \theta_2))
 \]
 - Distance between two points \(p_1 = (\phi_1, \theta_1) \) and \(p_2 = (\phi_2, \theta_2) \) on the torus:
 \[
 d_{S^1 \times S^1}(p_1, p_2) = \sqrt{d_{S^1}(\phi_1, \phi_2)^2 + d_{S^1}(\theta_1, \theta_2)^2}
 \]

2. **Product space of** \(\mathcal{SE}(3) \times \mathcal{SE}(3) \):
 - Each pose is represented as a point on the product space.
 - \(\mathcal{SE}(3) \) is a Lie group, containing the set of all \(4 \times 4 \) matrices:
 \[
 R \in \text{Rotation matrix}, \quad d \in \text{Translation vector} \]
 - \(I \) is the identity element of the group, and the tangent space of \(\mathcal{SE}(3) \) at \(I \) is called Lie algebra – denoted as \(\mathfrak{se}(3) \) and is identified by \(4 \times 4 \) matrix:
 \[
 \xi = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \quad \omega \in \mathbb{R}^3
 \]
 - **Exponential map:**
 \[
 \exp \xi = I + \omega \quad \text{and} \quad \exp \xi = \begin{bmatrix} 0 \\ \omega \cdot A T \omega \end{bmatrix} \quad \omega \neq 0
 \]
 - **Inverse exponential map:**
 \[
 \xi = \log \left(R \mid d \right) = \begin{bmatrix} \omega \\ 0 \end{bmatrix}
 \]

Measures of Quality

1. **Deviation from Geodesic Measure (DGM):**
 \[
 q = DTW(\gamma(t), \gamma_0(t)) + DTW(\gamma_0(t), \gamma(t))
 \]
 \(\gamma(t) \) = Original trajectory
 \(\gamma_0(t) \) = Ideal trajectory

2. **Deviation from Mean Trajectory Measure:**
 \[
 v(t) = \log_{\gamma(t)} \gamma(t)
 \]
 \(q(t) = ||v(t)|| \)
 \(g(T) = \sum q(t) \)
 \(q = \) Deviation from ideal path score
 \(DTW = \) Dynamic Time Warping
 \(\gamma(t) \) = Original trajectory
 \(\gamma_0(t) \) = Ideal trajectory

Experiments and Results

1. **Sit-to-stand (STS) quality assessment**
 \[
 \text{Movement Quality Measure} = \frac{\text{DGM score} \times \text{IPC of head speed} \times \text{Minimum hip angle}}{1.0625}
 \]

2. **Reach assessment in stroke rehabilitation**

Reference