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Samples of manganiferous rock varnish collected from fluvial, bedrock outcrop and Erie Barge Canal settings in
New York state host a variety of diatom, fungal and bacterial microbial forms that are enhanced in manganese
and iron. Use of a Dual-Beam Focused Ion Beam Scanning Electron Microscope to manipulate the varnish
in situ reveals microbial forms that would not have otherwise been identified. The relative abundance of
Mn-Fe-enriched biotic forms in New York samples is far greater than varnishes collected from warm deserts.
Moisture availability has long been noted as a possible control on varnish growth rates, a hypothesis consistent
with the greater abundance of Mn-enhancing bioforms. Sub-micron images of incipient varnish formation reveal
that varnishing in New York probably starts with the mortality of microorganisms that enhanced Mn on bare
mineral surfaces; microbial death results in the adsorption of the Mn-rich sheath onto the rock in the form of
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Lithobionts filamentous networks. Clay minerals are then cemented by remobilization of the Mn-rich material. Thus, the
Rock COaFing previously unanswered question of what comes first — clay mineral deposition or enhancement of Mn - can
Weathering be answered in New York because of the faster rate of varnish growth. In contrast, very slow rates of varnishing

seen in warm deserts, of microns per thousand years, make it less likely that collected samples will reveal varnish
accretionary processes than samples collected from fast-accreting moist settings.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The scholarly study of manganese-rich rock coatings started with
observations on rocks along the splash-zones of tropical rivers (von
Humboldt, 1812; Darwin, 1897). The first monograph examining Mn-
rich coatings focused on rocks along rivers in moisture-rich conditions
(Lucas, 1905). Some of the first microscopic evidence of a biotic origin
for Mn-rich coatings was found on stream-side rocks in a Queensland
rainforest (Francis, 1921). A long tradition of basic and applied research
on Mn-rich coatings in a wide variety of fluvial settings (Ball, 1903;
Bhatt and Bhat, 1980; Blackwelder, 1948; Boussingault, 1882; Carpenter
and Hayes, 1978; Carpenter and Hayes, 1980; Hem and Lind, 1994;
Huelin et al.,, 2006; Hunt, 1954; Klute and Krasser, 1940; Potter, 1979;
Robinson, 1981; Robinson, 1993; Tebo et al, 2005; Whalley et al.,
1990 Zahn, 1929) contrasts with the common textbook and Internet
perception that rock (or desert) varnish is a dryland phenomenon.

Black Mn-rich coatings have also been studied in non-arid settings
other than stream sides, including: alpine (Dorn and Oberlander,
1982; Glazovskaya, 1968; Glazovskiy, 1985; Hollerman, 1963; Hooke
et al,, 1969; Hunt, 1954; Krinsley et al., 2009; Krumbein, 1969; Scheffer
etal., 1963); Arctic (Biidel, 1960; Cailleaux, 1967; Rapp, 1960; Skarland
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and Giddings, 1948; Washburn, 1969); Antarctic (Dorn et al., 1992;
Glazovskaya, 1958; Glazovskaya, 1971); humid mid-latitude settings
(Dorn and Meek, 1995; Douglas, 1987; Ha-mung, 1968; Krumbein,
1969; Tricart and Cailleaux, 1964); cold springs (Hunt, 1961; Hunt,
1972; Mustoe, 1981; Supplee et al., 1971); hot springs (Tazaki, 2000);
fractures in regolith and bedrock in humid settings (Khak-mun,
1966; Kim et al., 2006; Weaver, 1978); as cutans in soils (Bolotina,
1976; Khak-mun, 1966; Huang et al., 2011); and caves (Moore, 1981;
Northup et al,, 2010; Peck, 1986; Rossi et al., 2010). The plethora of
studies on Mn-rich coatings in non-arid settings led to the position ad-
vocating the term “rock varnish” in place of “desert varnish” (Krumbein
and Jens, 1981; Dorn and Oberlander, 1982).

Despite two centuries of research on riverine and other non-arid
rock varnishes, the last few decades have seen researchers focus on
Mn-rich coatings in deserts (Boizumault et al., 2010; Christensen and
Harrison, 1993; Flood et al,, 2003; Garvie et al, 2008; Hodge et al.,
2005; Kuhlman and McKay, 2007; Kuhlman et al., 2006a; Lee and
Bland, 2003; Liu and Broecker, 2007; Liu and Broecker, 2008b; Nowinski
et al,, 2010; Patyk-Kara et al., 1997; Perry et al., 2006; Schelble et al.,
2005; Wang et al., 2011; Zerboni, 2008; Zhang et al., 1990; Zhou et al.,
2000). The reasons for the apparent recent bias toward desert set-
tings are unclear; it could have to do with the sociology of science
where researchers focus on a perceived funding source, for example
NASA-supported research regarding Martian analogs (DiGregorio,
2002; DiGregorio, 2010; Marlow et al., 2011). A desert focus could
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also have to do with the greater biogeochemical stability of varnish
in arid settings (Dorn, 1998; Dorn, 2007; Dorn, 2009). Alternatively,
there is a point of view that the Mn-rich coating found in deserts is some-
how distinct from similar coatings in non-arid settings (Blackwelder,
1948; Daveau, 1966; Loew, 1876; Peel, 1960; Lukashev, 1970; Moore
and Elvidge, 1982; Perry et al., 2006).

Regardless of the rationale, the recent trend toward eschewing the
study of varnish in non-arid settings may generate bias in theory de-
velopment. Consider recent ground-breaking research on the micro-
bial origin of varnish in caves and semi-arid environments (Northup
et al,, 2010; Rossi et al,, 2010). While we consider cave-based and
other mesic-setting research on microbial activity (Chafetz et al.,
1998; Dorn, 1998; Dorn and Meek, 1995; Ha-mung, 1968; Krumbein,
1969; Mustoe, 1981) relevant to the issue of varnish formation in
what are now deserts, this position is not shared universally.

Examination of varnish microlamination patterns in thousands of
ultrathin cross-sections reveals rates of varnish formation in arid regions
to be on the order of a just a few microns per millennia (Dorn, 1998; Liu
and Broecker, 2000). Thus, an alternative view could be posed in the
form of a question: how can the surfaces of rocks in hyperarid climates
that varnish so slowly be considered similar to rocks that experience lig-
uid water regularly and become coated within years to decades?

One potential answer rests in the thread of research finding that fre-
quent moistening increases rates of varnish formation (Buchun et al.,
1986; Capot-Rey, 1965; Dorn and Meek, 1995; Dorn and Oberlander,
1982; Goodwin, 1960; Hunt, 1954; Hunt and Mabey, 1966; Klute and
Krasser, 1940). Using the Holocene calibration of varnish microlaminae
(Liu and Broecker, 2007), a study of varnish on debris flows in Phoenix,
Arizona revealed that varnish can form one to two orders of magnitude
faster in particularly mesic microenvironments; these mesic settings,
however, favor acid-producing lithobionts that typically out-complete
and end up eroding most of the varnish (Dorn, 2010).

Fig. 1 explains this problem in a thought exercise of the continual in-
terplay between varnish deposition, occupation of rock surfaces by or-
ganisms that erode or grow faster than varnish, and the role of rock
hardness. In this conceptualization (Fig. 1), the ideal place to study accel-
erated varnish formation would be in a wet setting that does not foster
the growth of epilithics that interfere with varnishing. Caves, alpine envi-
ronments, and boulders in the splash zone of streams offer researchers
the ability to study rapid varnishing while minimizing exposure to the
erosive effects of faster-growing lithobiont competition. Thus, one answer
to the question of relevance of mesic-based research to varnish formation
in deserts climates is the ability to study rapid varnishing with lessened
interference from varnish-destroying lithobionts.
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Fig. 1. Conceptual model, combining prior thoughts (Dorn and Oberlander, 1982; Viles,
1995), of how lithobionts and rock varnish interact together. The graph is a generaliza-
tion of how effective moisture impacts the growth of rock varnish and the weathering
efficiency of lithobionts. In the case of rock varnish, a second key factor other than
moisture is competition from lithobionts. In the case of lithobionts, a second key factor
is the hardness of the rock.

An even broader reason for continuing research on non-arid var-
nishes is that the study of Mn-rich rock coatings in a variety of climatic
and environmental settings will promote the development of a more
comprehensive theory of varnish formation. To that end, this paper
returns to the tradition of studying varnishes in an area that few
would associate with “desert varnish”, i.e. New York. Manganese-rich
coatings on stream gravels are fairly common along streams in New
York and elsewhere in northeastern North America (Carpenter et al.,
1975; Huelin et al., 2006; Whitney, 1981). Our research hypothesis
going into this investigation was that we would find substantial differ-
ences between New York and warm desert varnishes through the use
of a new generation of scanning electron microscopes (SEM).

The study site section of this paper overviews the location and nature
of sampling locales. In this initial investigation into New York varnishes,
we did not employ a random or stratified random sampling technique.
“Grab bag” samples were collected at places where dark Mn-rich rock
coatings were visually obvious. The Methods section details the high-
resolution electron microscope techniques used to examine New York
samples. Results and discussion sections are combined in order to orga-
nize research findings into key themes and relate results to prior
research.

2. Study sites

We collected samples from sites in New York that represent differ-
ent environmental contexts. Settings include riverine settings where
rock varnish forms in contact with flowing water, on rocks quarried a
century ago for the Erie Barge Canal, on a glacial erratic, and subaerial
varnishes that started inside opened bedrock fractures (Fig. 2). The river-
ine sites experience periodic high water inundation, but the other sites
are in subaerial position. For the times of year when the surfaces are
exposed only to the atmosphere, they are subject to precipitation
in the range of 750 to 1500 mm that ranges between 3000 and
6000 mm of snowfall. Mean annual monthly temperatures range from
—14°Cin January to 26 °C in July.

A site of interest is the Erie Canal, because it provides available
chronological control in the region. Unweathered Silurian Keefer For-
mation sandstone of the Clinton Group was quarried a century before
our sample collection (Fig. 3). Quarrying took place at a nearby stone
quarry in Gasport between 1908 and 1917 (Jesse Bieber, Town of Royal-
ton Historian, personal communication, 2011). The third version of the
canal was completed in 1918, was approx. 3.5x36.5 m, and was
engineered for powered boats instead of mule-drawn craft. Varnished
clasts were collected from canal banks between Gasport and Middle-
port in a high enough position that was unlikely to have experienced
splashing from barge movement.

A second sampling site is along NY route 458 in the Adirondack
Northwest Lowlands, where joint faces of granitic gneiss appear to
have been exposed during road construction (Fig. 2).

We also sampled two sites along the Raquette River, a perennial
stream that initiates in the southern highlands of the Adirondack
Mountains dominated by gneiss and flows into the lower drainage
dominated by till, dolomite and sandstone. Our sampling sites on
the Raquette are in the zone of transition from gneiss to glacial till.
One environmental setting is a typical riverbank dominated by gneiss
till boulders, and the second the environmental setting is more like a
lake shoreline than a river bank (Fig. 2), also with gneissic till.

3. Methods

Randomly-selected rock fragments with rock coatings were taken
from collected samples. All samples were analyzed using the latest elec-
tron microscope technology at the CAMCOR facility of the University of
Oregon, including use of a Dual-Beam Focused Ion Beam (DB-FIB)
Scanning Electron Microscope. The DB-FIB has a micromanipulator
that digs into surfaces, and turns material over on the order of one
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Fig. 2. Collection sites of rock varnishes in New York, where the left image provides an overview of the site and the right image presents a close-up of the sampling locale. Upper
row: Erie Barge Canal region (N 43.18916 W 78.56873). Second row: Raquette River in a location of active turbulent flow (N 44.53372 W 74.92573). Third Row: Raquette River at
Higley Flow State Park where the shoreline is almost lacustrine in terms of the low velocity (N 44.50434 W 74.92573). Fourth Row: New York route 458 between St. Regis Falls and
Santa Clara (N 44.62762 W 74.42345), where joint faces appear to have been exposed by blasting during road construction.

micron to 30 pum wide. DB-FIB preparation of samples allows exami-
nation with scanning/transmission electron microscopy (STEM) and
energy dispersive analysis of X-rays (EDS) — all while maintaining a
vacuum. High resolution back-scattered electron microscopy was
used on the surfaces of all samples, and in addition, one of the sam-
ples (Raquette River, quiet water site) was prepared by thinning it
to approximately 100 nm with the focused ion beam portion of the
DB-FIB instrument. We then used scanning transmission electron
microscopy (STEM) to study the prepared cross-section at magnifi-
cations up to 500,000 times. The best spatial resolution obtained
was about 1 nm. EDS elemental measurements were made on all

samples, using established geological standards, and results are nor-
malized to 100%.

4. Results and discussion

Many papers published on varnish involve an unstated assump-
tion that the few samples analyzed represent a general condition,
allowing sweeping claims based on as few as three samples (Dorn
and Krinsley, 2011; Garvie et al., 2008). A second issue with the vast
majority of varnish studies derives from authors limiting themselves
to familiar techniques — creating an often-unstated interpretive bias
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Fig. 3. Historic photograph of boulders quarried in 1913 being placed along the Erie Canal, with a view of the boulders a century later. Rock varnish forms in the area experiencing
periodic inundation and also in subaerial settings that do not experience splash. The sample analyzed here derived from a subaerial setting.

(Dorn and Krinsley, 2011). Here, we admit that the scope of this study
is insufficient to claim that we analyzed anything but a small fraction
of the different types of varnishes found in these sites and we limit
ourselves here to a micron-scale perspective.

Since the goal of this paper rests in re-opening scholarly dialog on
the relationship between Mn-rich coatings in humid settings and
those varnishes found in warm arid settings, we combine results
and discussion together in order to clarify intellectual threads. How-
ever, our findings apply only to a limited number of samples and
offer a point of comparison for future research on riverine and other
non-arid varnishes.

4.1. Layered texture of rock varnish

Not all manganese-rich rock coatings are considered rock varnish.
True rock varnish is characterized by clay minerals that impose a layered
structure to the varnish as seen in cross-sections at high magnification
(Krinsley et al,, 1995; Krinsley, 1998). Mn-rich coatings that lack clay
minerals, and hence lack a layered cross-sectional texture, are heavy-
metal skins (Dorn, 1998). The four samples analyzed here show the
characteristic layering of rock varnish, illustrating that layering
can appear differently from alternative sample preparation ap-
proaches (Fig. 4). Fig. 4A and C sections were turned over using the

Fig. 4. Layered cross-sectional textures of rock varnishes collected from the Erie Barge Canal (A), New York Route 458 (B), active flow along the Raquette River (C), and low turbulence
flow along the Raquette River (D). The layered nature of rock varnish is seen differently based on alternative sample preparation approaches. The micromanipulator was used to excavate
portions of A and C, while B was simply an image of a physically broken surface. D is the result of DB-FIB use.
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Fig. 5. Lattice fringe spacings in HRTEM images suggest the presence of a mixture of clays in
the Erie Barge Canal varnish. The upper HRTEM indicates different interstratified kaolinite—
smectites, where the individual kaolinite layers appear as ca. 0.7-nm-spaced fringes. The
lower lattice fringe has spacings consistent with illite—smectite mixed-layer minerals.

micromanipulator, whereas Fig. 4B images a cross-section made by
physical breakage of the sample prior to insertion into the micro-
scope. The section displayed in Fig. 4D was made through the use
of DB-FIB.

This layered texture is imposed by clay minerals and how they
cement manganese to rock surfaces (Dorn, 2007; Krinsley, 1998;
Krinsley et al., 1995; Potter and Rossman, 1977). High resolution
transmission electron microscopy (HRTEM) reveals the presence of
clay minerals similar to those found in other studies (Fig. 5).
HRTEM imagery reveals lattice fringe spacings that are consistent with
mixed-layer illite-smectite minerals as well as some kaolinite layers.

Table 1

Physiochemical fixation of nanoscale oxides takes place through interac-
tion with mixed-layered clays (Potter, 1979). Potter (1979: 174-175)
explained the process:

“Deposition of the manganese and iron oxides within the clay matrix
might then cement the clay layer...the hexagonal arrangement of
the oxygens in either the tetrahedral or octahedral layers of the
clay minerals could form a suitable template for crystallization of
the layered structures of birnessite. The average 0-0 distance of
the tetrahedral layer is 3.00 A in illite-montmorillonite mixed-lay-
ered clays, which differs only 3.4 percent from the 2.90 A distance
of the hexagonally closed-packed oxygens in birnessite...”

In the polygenetic model, rock varnish formation relies on ongoing
nanoscale instability of manganese oxides that move from sources
such as bacteria sheaths into clay minerals (Dorn, 1998; Dorn, 2007,
Krinsley, 1998).

4.2. Mn-enhancement and in situ observations of microbial forms

Like varnishes found elsewhere, the New York samples are charac-
terized by a great enhancement of manganese above levels found in
the surrounding environment. The general Mn (II) oxidation reaction is:

Mn"" +1/2 O, + H,0 — MnO, + 2H" )

for an oxidation state of (IV). In addition, heterogeneous oxidation can
occur to accelerate the reaction rates where Mn (II) produces MnOOH
(s), as follows:

0, +4 M’ +6 H,0—> homogeneous or heterogencous—4 MnOOH(s) + 8 H*
2)

The increasing surface area of MnOOH(s) increases heterogeneous
reaction rates (Martin, 2005).

Mn must be transported to varnish surfaces in solution as Mn (II), and
in natural waters Mn (II) oxidation requires pH values>8.5 to oxidize
homogeneously without microbial assistance (Morgan and Stumm,
1965). Higher Eh values may also be important in the riverine settings
studied here, since Mn (II) can oxidize at lower pH values with higher
dissolved oxygen levels in the water. However, even given oxygen-
rich waters, abiotic oxidation of Mn (II) has slow kinetics (Martin,
2005), thus requiring microbial mediation to produce the observed
high concentrations of Mn oxides at pH values less than about 8.

EDS analyses of bioforms. Data are presented in weight percent, normalized to 100%, where elements below the limit of detection are indicated by no data. These analyses are based

on mineral standards.

Figure
Element Fig. 6A Fig. 6B Fig. 7 Fig. 8 Mn-rich Fig. 8 Fe-rich Fig. 9 smooth texture Fig. 9 black arrow Fig. 9 white arrow Fig. 10A Fig. 10B
CK 17.63 5.04 25.84
Na K 0.12
Mg K 0.81 0.36 0.14 1.84 0.17 1.99 1.74 0.50 0.80
ALK 0.85 2.19 0.21 0.39 2.70 0.11 2.61 3.36 2.23 4.45
SiK 6.59 37.62 0.69 0.37 9.85 0.34 12.92 16.32 2.28 6.56
PK 28.87 0.36 0.23 0.39 0.41 0.51
SK 0.28 0.37
ClK
KK 1.93 1.15 0.18 0.19 0.43 0.99
CaK 0.97 0.60 0.63 1.07 0.87 1.64 0.94 1.37 1.95 2.05
Ti K 0.25 0.16 0.19 0.58 0.41
Mn K 6.51 2.29 61.14 20.73 8.99 9.96 9.52 48.11 3447
Fe K 7.31 6.61 7.45 223 30.69 38.53 32.36 16.53 19.14
Zn K 513 0.77 1.24 0.94
BaL 1.89
(6] 4531 48.66 22.68 55.96 40.02 71.14 32.75 35.32 25.74 29.67
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Fig. 6. Organisms enriched in manganese and iron are common on Raquette River and Erie Barge canal samples. Image A presents a diatom from Higley Flow State Park. The bioform's
exterior in image B is enriched in Mn and Fe, sampled from a gneiss boulder along a fast-flowing section of the Raquette River; the bright filament extending from the left side is the
Omniprobe pulling away a piece for in situ study. Diatomaceous forms break-apart and pieces are incorporated into varnishes (arrows) from the Raquette River (image C) and along

the Erie Barge Canal (D).

Since general biogeochemical environment of the New York samples
is not sufficient to abiotically oxidize and fix Mn or Fe (Krauskopf, 1957;
Hem, 1964), the only other abiotic process known for Mn enhancement
involves nanoscale hematite that can enhance Mn (II) oxidation greatly
(Madden and Hochella, 2005). Unfortunately, the mineralogy of the
iron in these varnishes is not known. However, if nanoscale hematite
exists, it could possibly fix and enhance manganese. In contrast to the
difficulty associated with explaining New York varnish formation
through abiotic processes, we have found abundant and direct evidence
for the role of microorganisms.

Varnish researchers have employed four general types of strate-
gies to understand the role of organisms in the genesis of rock
varnish:

« field observations (Laudermilk, 1931; White, 1924);

e culturing of organisms (Adams et al., 1992; Dorn and Oberlander,
1982; Eppard et al., 1996; Grote and Krumbein, 1992; Hungate
et al,, 1987; Krumbein, 1969; Northup et al., 2010; Palmer et al.,
1985; Perry et al., 2004; Staley et al., 1991; Sterflinger et al., 1999;
Taylor-George et al., 1983);

Fig. 7. On a gneissic boulder on the Raquette River, a fungal-sized form (left image) is encased in sub-micron particles (right image) that are composed of over 60% Mn. This ovoid

form, in turn, is being coated by a film of carbon perhaps left by desiccating algae.
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Fig. 8. Sub-micron spherical forms on the surface the NY Route 458 varnish are in size
range of nanobacteria discussed in the literature (Chafetz et al., 1998; Folk, 1993). EDS
analyses (Table 1) reveal that these forms can be Mn-rich or both Mn and Fe-rich; the
smooth background is dominated by carbon.

analysis of organics extracted from bulk samples (Benzerara et al.,
2006; Eppard et al., 1996; Kuhlman et al., 2005; Kuhlman et al.,
2006a; Kuhlman et al., 2006b; Northup et al., 2010; Perry et al.,
2004; Spilde et al., 2005);

and in situ observations.

In situ approaches can analyze the chemistry of microbial forms
with EDS using secondary electron (Allen et al., 2004; Dorn, 2007;
Dorn and Oberlander, 1982; Dorn et al., 1992; Flood et al., 2003;
Northup et al., 2010; Wang et al., 2011), back-scattered electron
(Dorn, 1998; Dorn and Meek, 1995; Krinsley et al., 2009), and trans-
mission electron (Dorn, 1998; Krinsley, 1998; Perry and Kolb, 2003;
Probst et al., 2001) microscopy.

Rather than undertake culturing or DNA analyses, we used the in
situ strategy of making electron microscope observations and EDS an-
alyses of forms that appear to be biotic. These forms include cocci or
rod shapes of bacteria and fungal-sized filaments that are enriched
in manganese, iron or both. Of course, the in situ approach to under-
stand varnish genesis has an important limitation. Just because a
form has the right size and shape to be bacteria, fungi, or other biot-
ic-appearing forms does not prove that the forms are microorganisms
or even Mn-encrusted sheaths of microorganisms. With this caveat,

20 pm

this section presents STEM imagery and corresponding EDS analyses
(Table 1) of New York varnish biotic forms.

Observed biological forms displaying Mn and Fe enhancement ap-
pear to be more common than warm desert varnishes discussed in the
aforementioned references. Table 1 compiles EDS analyses associated
with microbial forms seen in STEM imagery. For example, enhanced in
Mn and Fe are associated with diatom and other organisms along a
quiet-water stretch of the Raquette River (Fig. 6A, B). Spherical or
ovoid forms displaying enrichments of Mn and Fe, in the size range of
bacteria and fungi, are found colonizing surfaces of a boulder along
the Raquette River (Fig. 7), along NY Route 458 (Figs. 8, 9), and along
the Erie Barge Canal (Fig. 10),

4.3. Problem of microfossil preservation in varnish

In situ studies of Mn-enriched bacterial forms on warm desert sur-
faces reveal that bacteria are infrequently seen on varnish surfaces
and even less commonly as fossils in cross-sections (Dorn, 1998;
Dorn and Meek, 1995; Jones, 1991; Krinsley, 1998; Krinsley et al.,
2009; Perry et al., 2004; Probst et al., 2002). This general paucity of
Mn-rich bacterial-forms is consistent with rates of varnish formation
on the order of microns per millennia in warm deserts (Dorn, 1998;
Liu and Broecker, 2000) and with the polygenetic model of varnish
formation (Krinsley, 1998; Dorn, 2007). Rarely found bacterial-
encrusted Mn that undergoes a very slow diagenesis with relocation
of Mn into clay minerals (Potter and Rossman, 1979) would generate
these observed accretion rates (Dorn and Krinsley, 2011).

Still, it is possible that Mn-enriched bacterial forms have been
missed in analyses of cross-sections, because the process of polishing
varnish samples for cross-section and thin-section analysis might end
up disturbing microbial fossils to the point where they might not be
recognizable. To assess this hypothesis, we used the DB-FIB to disturb
structures in situ in varnishes from NY Route 548 (Fig. 9) and the Erie
Barge Canal (Fig. 10). DB-FIB digging into these samples did reveal
bacterial-sized forms enhanced in Mn and Fe that were not notice-
able prior to the disturbance. Thus, DB-FIB disturbance of varnish struc-
tures, in tandem with STEM/EDS offers a new way to search for microbial
forms that are associated with Mn-Fe enrichment. By way of comparison,
a DB-FIB study of warm arid varnish collected from Solatario Canyon in
southern Nevada revealed almost no evidence of microbial forms.

Fig. 9. Platelets that are adhering loosely to the surface of the NY Route 548 varnish are enriched in Mn (about 9% elemental), but much more so in Fe (~39% black arrow and ~32%
white arrow in image A). The bright filament extending from the left side of image B is the Omniprobe used to break apart these platelets, exemplified by the white arrow. The close-
up in image C suggests that bacterial-sized forms appear to be embedded in platelet structures.
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Fig. 10. Omniprobe disturbance of an Erie Barge Canal varnish exposed a number of microbial forms, such as the fungal-sized spherical shape in image A showing an abundance of
over 48% Mn and the spherical shape in image B with over 34% Mn. The Omniprobe exposed a large fragment of detrital quartz (lower right in image B) mixed in with varnish
fragments and possible microbial fossils.

Table 2
Examples of elemental variation exhibited in bulk chemical analyses of rock varnishes found in desert regions. Results are normalized to 100% with measurements by PIXE (Cahill,
1986), with ‘na’ indicating not available and a blank indicating below the limit of detection.

Site Trail Fan, Death Manix Lake, Mojave Makanaka Till, Sinai Peninsula, Petroglyph South Ingenio, Peru Ayers Rock,
Valley Desert Hawaii Egypt Australia Desert Australia
Position Former rock fracture >1 m above soil With silica skin >1 m above soil >1 m above soil At soil surface From rock fracture
Na 1.1 0.62 0.28 0.17 na na
Mg 0.14 3.44 1.98 1.5 1.21 211 1.58
Al 23.74 25.77 21.13 2294 22.81 20.45 28.77
Si 39.09 32.35 29.77 3281 3334 45.88 35.69
P 0.49 1.15 0.69 0.53 0.53
S 0.7 0.3 0.2 1.13
K 3.45 2.11 33 242 2.79 291 2.11
Ca 4.87 135 4.89 291 2.18 6.22 1.45
Ti 1.52 0.84 0.73 0.68 0.65 0.85 1.19
Mn 10.87 1247 13.6 11.97 21.7 494 11.91
Fe 13.47 18.09 21.13 2294 13.26 12.03 16.57
Ni 0.13
Cu 0.12 0.22 0.33 0.25 0.44 0.04
Zn 0.27 0.3 0.49 0.42 0.44 0.16
Rb 0.25
Sr 0.21 0.42 0.11
Zr 0.29 0.22
Ba 0.85 0.19 0.16 0.18 0.14 2.42 0.73
Pb 0.74 0.98 0.27 034 0.22
Table 3

EDS analyses of varnish spots without microbial forms where barium, zinc and rhenium are above the limit of detection. Data are presented in weight percent, normalized to 100%,
where elements below the limit of detection are indicated by no data. These analyses are based on mineral standards.

Element NY Route 548 NY Route 548 Raquette River Erie Barge Canal Erie Barge Canal
Na K 0.41
Mg K 1.94 1.88 0.87

ALK 3.28 3.37 6.49 9.03
Si K 14.81 15.32 1.08 1134 29.06
PK 0.53 0.49 0.79

SK 0.34

KK 0.31 0.36 0.29 241 9.43
CakK 221 2.18 0.68 2.59 0.50
Ti K 1.10 0.85

Mn K 9.23 9.04 59.24 30.91 4.83
Fe K 31.64 3224 1335 8.83 0.68
Zn K 0.60 0.63 0.50

Bal 0.89 0.93
Re M 0.30

(o] 35.11 34.5 23.37 34.13 45.12

Totals 100.00 100.00 100.00 100.00
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Fig. 11. Some of the Mn-rich Erie Barge Canal varnish analyses show enrichment of barium (A) along with Mn, but many do not (B-D).

4.4. Role of humid sites in understanding rates of varnish formation

The prior literature has established that varnishes in humid settings
can form within decades to centuries (Buchun et al., 1986; Capot-Rey,
1965; Dorn and Meek, 1995; Dorn and Oberlander, 1982; Goodwin,
1960; Hunt, 1954; Hunt and Mabey, 1966; Klute and Krasser, 1940).
This is the case for varnishes growing along the Erie Barge Canal (e.g.
Fig. 4A). The sample analyzed here came from a site context that would
not have been influenced by inundation. Rather, the setting is subaerial.

According to Jesse Bieber (personal communication, Town of Royal-
ton Historian, 2011) a quarry near Gasport, Niagara County, provided
the boulders that now line the Erie Barge Canal. This locality lies on
the outcrop of the Clinton formation and was operated by the Wickwire
Limestone Co. in 1913. These findings of subaerial varnish growth in a
century are consistent with the prior literature that rapid varnish for-
mation can occur in wet settings. Finding a much greater abundance of

Mn and Fe-enhanced bioforms in New York samples is consistent with
a faster rate of varnishing. Thus, humid varnishes may offer a much
greater potential to observe active varnish processes than varnishes col-
lected from warm deserts.

4.5. Trace element enhancement: zinc, barium, and rhenium

Although zinc enhancement is well known in such settings as marine
nodules (Wang and Miiller, 2009), zinc is a trace or rare element in var-
nish collected from subaerial positions in warm deserts (Table 2). How-
ever, zinc has been noted more frequently in studies of Mn-rich coatings
on river cobbles (Boonfueng et al., 2006; Huelin et al., 2006; Nowlan,
1976; Tani et al., 2003). Our EDS spot analyses associated with biotic
forms (Table 1) and varnish surfaces without biotic forms (Table 3) are
consistent with prior observations of both warm desert varnishes and
Mn-rich coatings on river cobbles about zinc enhancement.
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A misunderstanding has developed in the recent varnish literature
regarding barium and whether or not it is a constant component of
varnish that co-varies with manganese. Almost all recent papers
reviewing rock varnish have referenced Mn-Ba connection presented
by Tanzhuo Liu and colleagues (Broecker and Liu, 2001; Liu and
Broecker, 2000; Liu and Broecker, 2007; Liu and Broecker, 2008a; Liu
and Broecker, 2008b). While Mn and Ba often display a spatial autocor-
relation at the micron scale, this is not always the case. In other var-
nishes collected from arid regions, barium does not appear to be
correlated with Mn (Dorn, 2007; Dorn et al., 1990; Krinsley et al., 1990).

Our analyses of New York varnishes (Tables 1, 3) reveal that Ba occurs
along with Mn, but not always — consistent with patterns seen in var-
nishes collected from deserts. Fig. 11 exemplifies the micron-scale vari-
ability of different EDS spectra of varnishes collected from an Erie Barge
Canal sample. The reasons for barium's bimodal behavior, in some cases
greatly enriched and others not, have not yet been established. We sus-
pect, however, the unstable nature of manganese oxides in varnish

(McKeown and Post, 2001) influences barium enrichment. Some manga-
nese oxides such as romanechite do contain barium, while others such as
birnessite do not.

An anomaly exists in the New York varnishes not reported else-
where in the literature. Rhenium is a very rare element of substantive
economic importance. We obtained one measurement (Table 3) where
rhenium was enriched as high as 0.30% in elemental abundance. If future
research replicates our finding of rhenium in humid-region settings, like
that at the Erie Barge Canal, humid varnishes could be valuable
economically.

4.6. Incipient accretionary processes

Prior studies examining incipient varnish accretion imaged with
lower-resolution secondary electrons showed platelets of varnish accret-
ing on mineral surfaces (Dorn and Oberlander, 1982) that were revealed
to be mostly clays in HRTEM imagery (Krinsley et al., 1995). Here, we

Fig. 12. Incipient varnish formation on minerals often takes the form of nanometer-scale filaments, displayed on Erie Barge Canal (A, B, D), Raquette River quiet water (E) and turbulent
water (F), and New York route 458 (C) samples. The length of the scale bar is 1 um in each image. The underlying minerals are quartz (A, B, E, F), biotite (C), and feldspar (D).
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Fig. 13. Layered particles, with the texture of clay minerals, are accreting on top of Mn-rich
material that has adsorbed to rock surfaces. The arrow points to Mn-rich hemispheres that
are part of filamentous network adsorbed to the underlying rock.

used much higher resolution SEM to find that mineral surfaces are being
initially colonized by networks of filaments (Fig. 12). The filaments, in
turn, appear to be composed of spherical-shaped Mn-rich components.
These filaments are too small to be microorganisms, since bacteria cell
widths are typically a micron, and the filaments of EDS-determined
Mn-rich material are tens of nanometers across.

It is possible that these Mn-rich filaments are produced by abiotic
enhancement of Mn (II) by nanoscale hematite (Madden and Hochella,
2005). However, we favor the hypothesis that the filaments are the des-
iccated remains of microbial sheaths. The filamentous networks seen in
Fig. 12 could have been the point of microbial adsorption on a mineral
surface. Then, after the organisms died, the accumulated Mn would
have remained in contact with the mineral surface. Varnish accretion
would have then required clay minerals to then settle on these loci,
and the Mn would have then cemented clay minerals to the mineral
surface as seen in Fig. 13.

5. Conclusions

Varnish research in the last few decades has focused on manganese-
rich coatings found in deserts, creating a possible bias in theory develop-
ment. Thus, this research continues the tradition of varnish research in a
wider variety of terrestrial weathering environments through the use of
high resolution electron microscopy, with associated tools DB-FIB and
EDS. Our research hypothesis going into this investigation was that we
would find substantial differences between New York (humid) and
warm desert varnishes.

There exist far more similarities between the observed humid and
arid region varnishes than differences. New York varnishes display the
same sub-micron cross-sectional texture of layering imposed by clay
minerals, contain clay minerals as seen in HRTEM imagery, and host a va-
riety of microbial forms that are enhanced in Mn in in situ EDS observa-
tions. There are dozens of elements enhanced in arid varnish over
background values (Bard et al., 1978; Dorn et al.,, 1990; Lakin et al.,
1963; Nowinski et al., 2010), including the zinc and barium observed
here. However, rhenium enhancement has not been observed previously
in arid varnishes.

Differences between humid and arid region varnishes include a much
faster rate of formation in the wet settings of New York, in the far superior
preservation of microbial forms, and in finding diatoms enhancing Mn, in
addition to bacteria and fungi.

However, the biggest difference is that Mn- and Fe-enhancing micro-
bial forms are much more common in New York than samples collected
from warm deserts — supporting a traditional hypothesis that moisture
abundance is a key factor in accelerating rates of varnish formation.
Humid varnishing appears to start with microorganisms enhancing Mn
in an environment too acidic for physiochemical oxidation. Microbial
mortality then results in Mn-rich sheath material adsorbing to mineral

surfaces, followed by the fixation of clay minerals by Mn that has
remobilized at the nanometer scale. These observations are in accor-
dance with observations on the importance of clay minerals in arid-
region varnish formation (Dorn and Oberlander, 1982; Potter and
Rossman, 1977) and with the polygenetic model of varnish formation
minerals (Dorn, 2007; Dorn, 1998; Krinsley, 1998). However, more
rapid varnishing and the superior preservation of microbial remains in
the moist New York environment add a new piece to how varnishing
initiates — starting with microorganisms enhancing manganese on
bare mineral surfaces, followed by clay mineral adsorption.
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