Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice

Jaeil Bae1, C. Austen Angell2, and Xiao Cheng Zeng3,4

1Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, 68588; and 2Department of Chemistry, Arizona State University, Tempe, AZ, 85287

Edited* by H. Eugene Stanley, Boston University, Boston, MA, and approved February 23, 2010 (received for review June 10, 2009)

Three-dimensional (3D) gas clathrates are ice-like but distinguished from bulk ices by containing polyhedral nano-cages to accommodate small gas molecules. Without space filling by gas molecules, standalone 3D clathrates have not been observed to form in the laboratory, and they appear to be unstable except at negative pressure. Thus far, experimental evidence for guest-free clathrates has only been found in germanium and silicon, although guest-free hydrate clathrates have been found, in recent simulations, able to grow from cold stretched water, if first nucleated. Herein, we report simulation evidence of spontaneous formation of monolayer clathrate ice, with or without gas molecules, within hydrophobic nano-slit at low temperatures. The guest-free monolayer clathrate ice is a low-density ice (LDI) whose geometric pattern is identical to Archimedean 4 · 82-truncated square tiling, i.e. a mosaic of tetragons and octagons. At large positive pressure, a second phase of 2D monolayer ice, i.e. the puckered square high-density ice (HDI) can form. The triple point of the LDI/liquid/HDI three-phase coexistence resembles that of the ice-h4/water/ice-III three-phase coexistence. More interestingly, when the LDI is under a strong compression at 200 K, it transforms into the HDI via a liquid–solid–liquid transition, the first direct evidence of Ostwald’s rule of stages at 2D. The tensile limit of the 2D LDI and water are close to that of bulk ice-h4 and laboratory water.

Results and Discussions

We first considered a binary fluid mixture of water and argon (with 11.1% mole fraction of Ar) confined to the slit nanopore (D = 0.62 nm) whose two opposing walls are smooth and hydrophobic (13–15). The fluid mixture was initially equilibrated at a constant temperature (T = 1000 K) and a constant lateral pressure (pL = 500 MPa) and then subjected to an instantaneous quench to T = 250 K. After 30 ns equilibration, a monolayer gas clathrate was observed, as shown in Fig. 1A (and Movie S1). Interestingly, the hydrogen-bonding network of the gas clathrate exhibits a geometry known as Archimedean 4 · 82 truncated square tiling, i.e. a mosaic of tetragons and octagons.

At maximum (100%) occupancy, when each octagon contains an argon atom, the mole fraction of Ar would be 20%. In practice it is difficult to achieve full occupancy in MD simulations due to the strong hydrophobic attraction among argon atoms. As an example, we considered a water-argon fluid mixture (with ~19.7% mole fraction of Ar) confined to the same slit nanopore. The mixture was first equilibrated at a constant lateral pressure of 1 GPa and T = 1,000 K, and then quenched to 250 K and held for 150 ns. Argon occupancy of only ~65% was attained. When the simulation was extended for additional 70 ns (with temperature and pressure set to T = 270 K and pL = 1.5 GPa), a much higher argon occupancy, ~78%, was achieved (Fig. 1B). Still, a small domain of phase-separated argon fluid remained within the monolayer gas clathrate.

While guest molecules are necessary for stabilization of the open-lattice structure of 3D gas clathrates of water at ambient pressure, it is known that a guest-free clathrate of germanium can be synthesized (16), and an almost empty clathrate of Si has been described (17, 18). The latter can definitely be formed in simulations with the Stillinger-Weber potential (19). It is clearly a question of interest whether a guest-free clathrate of water is achievable under any circumstances. We note that Wang and coworkers (20) reported a monolayer ice structure of chemisorbed water on a surface of hydroxylated silica at 0 K (20). This chemisorption-based ice structure resembles the Archimedean 4 · 82 truncated square tiling but it is not freestanding because of strong interaction between water and the underlying substrate. Molinero and coworkers (11) showed that, in their 3D mW model, empty clathrates could form but only at large negative pressures. Fennell and Gezelter reported a MD simulation of spontaneous formation of a guest-free ice-clathrate structure (ice-i) from a soft-sticky-dipole liquid (a model of water) at a low temperature (21). The projection of the ice-i onto a 2D plane along a particular direction gives rise to the Archimedean 4 · 82 truncated square tiling. Later, however, Fennell and Gezelter showed that the stability of ice-i can be model-dependent (22), and the spontaneous formation of ice-i-like structure based on more realistic models of water (such as TIP5P) is yet to be seen. Here we study the question of spontaneous formation for the network structure of Archimedean 4 · 82 truncated square tiling.

We first performed a MD simulation of pure water confined to the slit nanopore (D = 0.557 nm) using the constant lateral pressure and constant temperature (NpT) ensemble. The confined

Author contributions: J.B., A.A., and X.C.Z. designed research; J.B. and X.C.Z. performed research; J.B. and X.C.Z. contributed new reagents/analytic tools; J.B., A.A., and X.C.Z. analyzed data; and J.B., A.A., and X.C.Z. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

†To whom correspondence should be addressed. E-mail: xczeng@phase2.unl.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/0906437107/DCSupplemental.
LDI only forms at the slit. 2D LDI is not observed at for instance, with needed to stabilize the LDI phase as the slit width increases. LDI is insensitive to the atomic structure of the wall surface, we hydrophobic confinement. To confirm that the formation of the insensitive to detailed atomic structure of the walls but only to the smooth walls, which indicate that the formation of 2D HDI ice is atomically rough two neous crystallization of the puckered monolayer square ice within positive pressure, a form of 2D high-density ice (HDI), i.e. the monolayer gas clathrate formed in between two hydrophobic walls (Fig. 2). Bai et al. PNAS
naka (26) observed the same ice structure within two
2D HDI at high lateral pressure? To address this question, we explored \(p_\text{xy} - T \) phase diagram of the monolayer water confined to a slit nanopore (\(D = 0.65 \text{ nm} \)) through five independent MD simulations using the \(Np_\text{xy}T \) ensemble, where \(T = 200, 220, 230, 240, \) and 250 K, respectively. In all five simulations, the initial pressure was set to \(p_\text{xy} = -100 \) MPa and the initial configurations were chosen to be a perfect LDI (Fig. 2A), with the following results:

1. For \(T = 250 \) K, the LDI melts into a liquid due to the larger width (\(D > 0.6 \text{ nm} \)). As \(p_\text{xy} \) is increased from –100 to 600 MPa in steps (20 ns per step), a phase transition from the liquid to the puckered square HDI occurs at \(p_\text{xy} \approx 400 \) MPa, as shown in Fig. 3A. By contrast, when \(p_\text{xy} \) is decreased in steps (20 ns per step) from 600 to –100 MPa with a perfect HDI as the initial structure, no HDI-to-liquid transition was observed since the area density of the HDI shows little change (Fig. 3A), indicating a high free-energy barrier that separates the HDI and liquid state at 250 K. However, if some defects are deliberately introduced into the HDI to speed up nucleation process, a HDI-to-liquid transition was observed at 50 MPa within a few ns. The high free-energy barrier and large hysteresis loop suggests that the liquid-to-HDI transition is a strong first-order phase transition even though the transition is quasi-2D in nature (28).

2. For \(T = 240 \) K, the LDI is stable at the lowest pressure \(p_\text{xy} = -100 \) MPa. As \(p_\text{xy} \) is increased from –100 to 600 MPa

liquid water was initially equilibrated at \(T = 320 \) K and \(p_\text{xy} = 1 \) MPa. The temperature of the system was then lowered in six steps to \(T = 260 \) K. At each temperature step, a simulation time of 20 ns was used. Based on the equilibrated system at 260 K, six independent MD simulations were carried out next, all subjected to an instantaneous quench to \(T = 250 \) K with the lateral pressure controlled at \(p_\text{xy} = 500, 100, 50, 5, -5, \) and \(-50 \) MPa, respectively. Spontaneous formation of 2D crystalline structures (Movie S2) was observed in five simulations except for \(p_\text{xy} = 500 \) MPa (for which the liquid was in a supercooled state). Remarkably, the 2D crystalline structures (other than some polygonal defects) are identical to the water network structure of the monolayer gas clathrate, i.e. a mosaic of tetragons and octagons. A snapshot of the final configuration of the 2D crystalline structure for \(p_\text{xy} = -50 \) MPa is shown in Fig. 2A, where the area density \(N/A \) (water molecules per unit area) is \(\sim 8.94 \text{ nm}^2 \). Note that the water network of the monolayer gas clathrate satisfies the ice rule (i.e., every water molecule is hydrogen-bonded to exactly four nearest-neighbor water molecules) due to the three-centered hydrogen-bonding interaction between any two neighbor tetra-
gons (Fig. 2B). We therefore name the water network of the monolayer gas clathrate a 2D low-density ice (LDI).

Simulations using larger slit widths in the range of \(D = 0.50 – 0.68 \text{ nm} \) show that more negative lateral pressures are needed to stabilize the LDI phase as the slit width increases. For instance, with \(D = 0.575 \) nm, spontaneous formation of 2D LDI is not observed at any positive pressure, in contrast to the slit \(D = 0.557 \) nm case described above; at \(T = 250 \) K, LDI only forms at \(p_\text{xy} = -5 \) MPa. However, if polygonal defects are present, the defects will promote void nucleation and eventually can lead to structural raptures (23, 24). For example, a snapshot of void-containing LDI is shown in Fig. 2C. Clearly, polygonal defects tend to accumulate near the edge of the 2D void. Once formed, the void grows larger, and faster, and eventually the LDI will be ruptured.

On the other hand, when the confined water is at a high posi-
tive pressure, a form of 2D high-density ice (HDI), i.e. the puckered monolayer square ice (Fig. 2D) can form spontaneously (25, 26). Note that Zangi and Mark (25) observed the spontaneous crystallization of the puckered monolayer square ice within two atomically rough walls of model quartz, while Koga and Tanaka (26) observed the same ice structure within two atomically smooth walls, which indicate that the formation of 2D HDI ice is insensitive to detailed atomic structure of the walls but only to the hydrophobic confinement. To confirm that the formation of the LDI is insensitive to the atomic structure of the wall surface, we performed an independent constant-volume and constant-
temperature \((NVT)\) MD simulation for water confined to two single graphene layers (see Materials and Methods). Again, spontaneous formation of LDI at 210 K is observed in less than 2 ns. A snapshot of the LDI configuration at 8 ns is displayed in Fig. S1.

It is known that bulk ice has 15 crystalline polymorphs [named using Roman numerals (27)] and most of them are stable only at high pressures. However, the number of 2D polymorphs for monolayer ice is much smaller than 15 because of the restrictions involved in satisfying the ice rule in 2D while simultaneously tiling the plane seamlessly. Can the 2D LDI undergo a phase transition to 2D HDI at high lateral pressure? To address this question, we performed four simulations in steps (20 ns per step). A cavity (void) is nucleated inside the LDI. The system is in between two hydrophobic walls (\(D = 0.59 \text{ nm} \), \(T = 240 \) K). (D) Top view (top) and side view (bottom) of a snapshot of quenched molecular coordinates of 2D monolayer high-density ice (HDI) formed in between two hydrophobic walls (\(D = 0.65 \text{ nm} \)).
in steps (20 ns per step), two phase transitions occur, one from the LDI to liquid at \(p_{xy} \approx 50 \) MPa and another from liquid to HDI at \(p_{xy} \approx 280 \) MPa, as shown in Fig. 3A. This 2D solid-to-liquid-to-solid phase transition is similar to the bulk ice \(I_h \)-to-liquid-water-to-ice III phase transition (27).

3. For \(T = 230 \) K, a similar solid-to-liquid-to-solid phase transition occurs, one at \(p_{xy} \approx 100 \) MPa while another at \(p_{xy} \approx 180 \) MPa. The fact that the LDI-to-liquid transition occurs at higher \(p_{xy} \) and lower \(T \) indicates that the liquidus line of the 2D LDI has a negative slope like that of bulk ice \(I_h \). Clearly, from the Clapeyron equation, the density of 2D LDI is lower than that of 2D liquid.

4. For \(T = 220 \) K, the solid-to-liquid-to-solid transition disappears. Rather, a strong first-order LDI-to-HDI transition can be seen at \(p_{xy} \approx 250 \) MPa as \(p_{xy} \) is increased from \(-100 \) to \(600 \) MPa in steps (Fig. 3A). This solid-to-solid phase transition resembles the ice \(I_h \)-to-ice III transition in bulk.

5. For \(T = 200 \) K, again, a strong first-order LDI-to-HDI transition occurs, but at a pressure \(p_{xy} \approx 400 \) MPa (Fig. 3A).

Figure 3B displays an approximate \(p_{xy}-T \) phase diagram, based on results of the latter five MD simulations (the true phase boundary can be determined via the two-phase coexistence method, e.g. ref. 29). A triple point for LDI-liquid-HDI three-phase coexistence is possibly located between 220–230 K and 100–180 MPa. The triple point resembles the bulk ice \(I_h \)-liquid-ice III triple point (27). As in the 3D system, the LDI-HDI phase boundary exhibits a positive slope while the LDI-liquid phase boundary exhibits a negative slope.

As might be expected from the behavior of the bulk phases, both liquid and crystal phases of 2D water exhibit tensile limits. The tensile limit represents the release of a metastable state and hence has a time dependence related to nucleation probabilities. In 3D systems the nucleation probability is an extremely sharp function of \(T, P \) near the homogeneous nucleation limit but the problem has been little explored in reduced dimensionality. In our computer experiments, these are sharply defined and reproducible at a fixed rate of increase of the lateral tension which we applied stepwise by increasing the tension 100 or 20 MPa each 300 ps, at each temperature (see Materials and Methods).

The results are combined with the melting and crystal/crystal phase transitions to give the approximate phase diagram of 2D ice presented in Fig. 3B, including tensile limits of the 2D system. Its form may be compared with the phase diagrams presented elsewhere for 3D (TIP4P) ice (24) and laboratory water (23). Although it may be no more than the difference between two alternative potentials, the present TIP5P 2D ice (at \(D = 0.65 \) nm) appears to have a higher tensile limit than 3D ice (1.4 \(\pm \) 0.1 GPa vs. 1.0 GPa), while the tensile limit of the 2D liquid at 270 K, 115 \(\pm \) 9 MPa is lower than the measured tensile limit of 3D liquid water (140 MPa) (23). We are surprised by the overall degree of similarity, which may be coincidental. Note that a spinodal limit at 298 K determined recently for two-layer water confined between structured hydrophobic walls (30), of comparable separation, was nearly twice as negative as the tensile limit estimated here. As always, the distinction between behavior of perfect crystal, and surface-free, systems of simulation, and the behavior of real systems with defects and interfaces, must be taken into account when assessing the results of these calculations. The difference between true equilibrium and spinodal limits to phase stability [two-phase versus one-phase melting, for instance (24)] will be evaluated in future work.

Besides metastability of water under tension (i.e. at negative pressure), there is also much interest in the metastability of water in the supercooled state. Bulk water, when supercooled, can exhibit unique phase behavior such as (controversially) a liquid-to-liquid transition from low-density liquid (LDL) to high-density liquid (HDL) (31–39). Can the 2D monolayer water, when supercooled, also undergo a liquid-to-liquid phase transition? To explore this possibility, we performed an additional three independent MD simulations using a quenching technique. Initially, a sample of water confined to a slit nanopore (\(D = 0.65 \) nm) was equilibrated at \(T = 250 \) K and \(p_{xy} = -80, -20, \) and 60 MPa, respectively. Each system was then quenched instantaneously to 200 K, followed by 20 ns MD simulation in the \(N_pxyT \) ensemble.

Interestingly, for two systems at \(p_{xy} = -80 \) and \(-20 \) MPa, we found that the liquid freezes spontaneously into the LDI phase with a small domain of HDI trapped in the middle of LDI during the crystal growth. The overall area density of the LDI/HDI structure is 9.87 (Fig. 4A) and 9.91 nm\(^{-2}\), respectively. Conversely, for the system at \(p_{xy} = 60 \) MPa, the liquid freezes spontaneously into
recognize the Ostwald in 1897 (40). To our knowledge, this phenomenon has not been reported for crystallization in 2D materials. Can the same behavior be observed from 2D? To address this question, we examined dynamic trajectory of the simulation 5 described above, that is, the LDI is under a strong compression (400 MPa) at a low temperature (200 K). Remarkably, the dynamic trajectory shows that the LDI melted into a (short-lived) liquid before transforming into the HDI (Movie S5). At 200 K, the liquid is indeed the least stable state. Nevertheless, crystallization of the 2D HDI proceeds from the least stable state—2D liquid—consistent with Ostwald’s prediction (‘rule of stages’). We note that a similar evidence of crystal growth through intermediate unstable states has been recently revealed in a 3D material (41).

Materials and Methods

Molecular Dynamics Simulation. Two types of walls for the slit nanopore were considered: (1) a rigid and smooth hydrophobic wall, and (2) a rigid single graphene layer. The wall-wall separation was set to accommodate just one layer of water (26). The TIP5P model was used for the water (42). For the smooth wall, we opted the 9-3 Lennard-Jones (LJ) potential for the water-hydrophobic wall interaction (13–15, 43). The MD simulations were performed using the constant lateral pressure and constant temperature \((Np_{xy}T)\) ensemble. The periodic boundary conditions were applied in the lateral direction \((x\text{ and }y)\) in parallel with the two walls. The simulation supercell contains 400 water molecules, with or without argon atoms (the LJ parameters for argon are \(σ_{Ar}=3.40\ Å\) and \(ε_{Ar}=0.238\mathrm{kcal}/\mathrm{mol}\)). The cross LJ interaction parameters between Ar and TIP5P water were given by Lorentz-Berthelot rule. The Ar-wall interaction is described by the 9-3 LJ potential function, \(U=\epsilon_{Ar-wl}(\frac{\rho_{Ar-wl}^9}{r^9}-\frac{\rho_{Ar-wl}^{3}}{r^3})\), where the LJ parameters are \(\sigma_{Ar-wl}=2.430\ Å\) and \(\epsilon_{Ar-wl}=2.965\mathrm{kcal}/\mathrm{mol}\). The oxygen-wall interaction is also described by the 9-3 LJ potential with LJ parameters \(\sigma_{O-wl}=2.4737\ Å\) and \(\epsilon_{O-wl}=1.2024\mathrm{kcal}/\mathrm{mol}\). These parameters are almost the same as those used in a previous comprehensive study of the phase diagram of TIP5P water in the slit nanopore (44).

For the graphene wall, the C-C distance is fixed at 1.405 Å. The LJ parameters for carbon and oxygen interaction are \(\sigma_{C-O}=3.26\ Å\) and \(\epsilon_{C-O}=0.1173\mathrm{kcal}/\mathrm{mol}\) (derived based on the Lorentz-Berthelot rule and the LJ parameters given in ref. 45 for TIP3P water model). The distance between the two graphene, namely, from the carbon center of one layer to the carbon center of the opposing layer, is fixed at 0.65 nm. The MD simulations were performed using constant volume and constant temperature (NVT) ensemble. The simulation supercell contains 400 water molecules. The area density of water is 9.02 nm\(^2\). All intermolecular interactions, including the long-range charge-charge interaction and the LJ interaction between oxygen atoms, were truncated at 8.75 Å by a switching function (26).

Structural Analysis. Instantaneous configurations (snapshots) generated in the MD simulations were mapped onto corresponding potential-energy volume) (14). The appearance of an HDI phase while a domain of LDI forms in the midst of crystal growth of HDI. The overall area density is 12.9 nm\(^2\) (Fig. 4B). Hence, for 2D monolayer water, the fast kinetics of crystallization at temperatures around 200 K prevents the formation of LDL or HDL. In the pressure range of \(p_{xy} = 60\) MPa and \(T = 200\) K, the HDI-to-LDI transition could be observed after \(70\) ns. Lastly, when the temperature was raised to \(T = 230\) K, the HDI (containing a LDI grain) melted into liquid under the tension and then transformed into the HDI (Movie S4).

The appearance of a liquid intermediate state in between the solid-to-solid transition is an interesting phenomenon, first
22. Fennell CJ, Gezelter JD (2005) Computational free energy studies of a new ice poly-
5. Fehr U, Snyder G, Edgborg PK (2000) Dating of pore wastes with 129I. Relevance for the