Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by “Water-in-Bisalt” Electrolyte

Liaomin Suo, Oleg Borodin, Wei Sun, Xiulin Fan, Chongyin Yang, Fei Wang, Tao Gao, Zhaohui Ma, Marshall Schroeder, Arthur von Cresce, Selena M. Russell, Michel Armand, Austen Angell, Kang Xu,* and Chunsheng Wang*

Abstract: A new super-concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra-high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li-ion cell based on LiMn2O4 and carbon-coated TiO2 delivered the unprecedented energy density of 100 Wh kg⁻¹ for rechargeable aqueous Li-ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the “water-in-salt” electrolyte further pushed the energy densities of aqueous Li-ion cells closer to those of the state-of-the-art Li-ion batteries.

Lithium-ion batteries (LIB) overwhelmingly dominate the portable electronics market (ca. 50 Wh) with their superior energy densities.[1] To withstand the high voltages (>3.0 V) generated by the highly energetic electrochemical couples, flammable and toxic non-aqueous electrolytes have to be used, causing safety and environmental concerns that will worsen by orders of magnitude in large-scale applications, such as automotive (ca. 100 Wh) and grid-storage (ca. 10 kWh). Aqueous electrolytes that are intrinsically nonflammable and green would have provided ideal solutions. However, their narrow electrochemical stability window (1.23 V), imposed by hydrogen and oxygen evolution,[2] restricted the voltage output of such aqueous LIB under 1.50 V and resulted in severely compromised energy densities. Thus, expanding the electrochemical stability window of aqueous electrolytes becomes an issue of fundamental importance that would not only determine the practicality of aqueous LIB, but in a broader context, general aqueous electrochemistry. Unfortunately, no such effort has been reported given the significant difficulty of suppressing water decomposition reactions, in particular the reduction of water leading to hydrogen evolution, until recently when we successfully demonstrated a 3.0 V stability window when a new class of “water-in-salt” electrolyte was formulated. In such a super-concentrated electrolyte, the decomposition of salt anion occurs preferentially on the anode before hydrogen evolution occurs, leading to the formation of a dense solid electrolyte interphase (SEI) primarily consisting of LiF.[3] A 2.3 V aqueous Li-ion cell based on the electrochemical couple of LiMn2O4 and Mo5S3 was supported by such an electrolyte to provide an unprecedented energy density of 84 Wh kg⁻¹ based on total electrode weight, which should be over 100 Wh kg⁻¹ if the irreversible loss associated with SEI formation could be eliminated.[4]

Apparently, the efficiency of forming a SEI in aqueous electrolytes depends on the salt concentration, whose increase indicates a decrease in water molecules in the solvation sphere of Li⁺ and a reduction in the electrochemical activity of water. However, the high concentration (21 m; note m is molality, also called the molar concentration, not molarity) of LiTFSI (lithium bis(trifluoromethane sulfonyl)imide) used in the “water-in-salt” electrolyte, already approaches the saturation point of this lithium salt at room temperature and corresponds to a stoichiometric compound Li2TFSI (H2O)2Li, leaving barely any room for SEI improvement via further increase of salt concentration.[5] This situation constitutes an intrinsic barrier to maximizing the full cell energy density, as Li⁺ is a limited resource therein.

It has been well-established that a hydrated salt, which could be considered a saturated electrolyte itself, could dissolve another unhydrated salt of similar chemical properties and form mixed salt systems in the molten state with higher cation/water ratios. One conspicuous example is Ca(NO3)2·(H2O)6, which dissolves KNO3 up to around 60 Mol %.[6] Inspired by this knowledge, we used a “water-in-salt” (WIS) electrolyte (21 m LiTFSI in water, or LiTFSI (H2O)1.5) as a parent hydrate salt to dissolve another lithium salt containing an anion of similar fluorinated structure, lithium trifluoromethane sulfonate (LiOTf). The mixed salt system, abbreviated “water-in-bisalt” (WIBS), consisting of 21 m LiTFSI and 7 m LiOTf provides a molten electrolyte...
with 28 mLi+, or cation/water ratio of approximately 1:2. Compared with the parent “water-in-salt” system, a more compact and protective SEI is formed at higher efficiency in such highly ionic aqueous media, allowing a 2.5 V aqueous Li-ion full cell based on the electrochemical couple of LiMn2O4 and TiO2 that delivers the highest voltage (average discharge voltage: 2.1 V) and energy density (100 Wh kg⁻¹ based on the total electrode mass) amongst all aqueous battery systems to date.

Figure 1 summarizes the physicochemical properties of “water-in-bisalt” electrolytes. At room temperature, the maximum solubility of neat LiTFSI or LiOTf in H2O is in the 21–22 m and 22–23 m, respectively, above which both salts inevitably precipitates. However, upon mixing these two salts, the ternary system consisting of LiTFSI/LiOTf/H2O can accommodate up to 28 m of mixed salts (21 m LiTFSI and 7 m LiOTf) at room temperature and stay liquid, despite that the Li+/water molar ratio has now reached 0.5:1. Compared to the Li+/water molar ratios of 0.01:1 at 1.0 m where Li+ is coordinated by a sufficient number of water molecules, and 0.38:1 at 21 m where the shortage of water molecules in primary solvation sphere of Li+ starts to be felt and heavy anion presence therein is expected, this unprecedented depletion of water suggests unusual behaviors, both in the bulk and interphasial. In this case, Li(H2O)2+ in 21 m water-in-salt electrolyte can be considered as a hydrated cation that further dissolves unhydrated Li+.7

The thermal behavior for a series of such bisalt systems was characterized with differential scanning calorimetry (DSC). The liquidus temperatures of 21 mLiTFSI/7 mL iOTf starts at 21.4°C (denoted as Tl), which is close to that of 21 mLiTFSI solution (Tl = 21.5°C; Figure 1a and Figure S1 in the Supporting Information). Compared with the two single salt systems (21 mLiTFSI and 22 mLiOTf in H2O), the ionic conductivities do not suffer any severe compromise, which maintain the level of 6–8 mScm at room temperature (21 mLiTFSI + 1 mL iOTf: 7.6 mScm, 21 mLiTFSI + 3 mL iOTf: 7.5 mScm; and 21 mLiTFSI + 7 mL iOTf: 6.5 mScm; Figure 1b). Closer examination of the solution structure using Raman spectra revealed that the introduction of the second salt LiOTf into the parental electrolyte 21 mLiTFSI/H2O does not seem to induce any detectable shift of the strongest peak at 742 cm⁻¹. Since this absorption corresponds to the S=N-S bending in TFSI-structure (Figure S2), its constant position implies that the coordination environment of TFSI- is insensitive to the presence of a second anion OTf-. In fact, MD simulations described in Supporting Information predicted that addition of 7 mL iOTf resulted in a displacement of about 0.5 water molecules on average from the Li+ solvation shell by the OTf- anion while the Li+/TFSI- aggregation did not change significantly.

The electrochemical stability windows of WIB (21 mLiTFSI in H2O) and WIBS (21 mLiTFSI + 7 mL iOTf in H2O) electrolytes were evaluated with cyclic voltammetry (CV) on non-active stainless-steel mesh electrodes (Figure 2). The additional 200–300 mV shift observed in the potentials of spinel LiMn2O4 in WIBS is due to the higher lithium ion concentration in the new electrolyte, which is more concentrated than WIS by about 7 m. Figure 2b indicated that the potential for hydrogen evolution negatively shifted from 1.9 V in WIB to 1.83 V in WIS, while the cathodic current at 1.5 V also significantly diminished from 10 mA cm⁻² to 4 mA cm⁻² with WIS (Figure 2a). Meanwhile, ultrahigh Li+ concentration of 28 m also pushed the lithiation potential of TiO2 and from 1.8 V to 2.0 V (Figure S3). The combined effect of the above factors should ensure that the reversible lithiation/de-lithiation of TiO2 rests comfortably within the cathodic limits of the water-in-bisalt electrolyte. On the cathode side, the addition of 7 mL iOTf into 21 mLiTFSI did not cause any essential change in oxygen-evolution behavior (Figure 2c) as evidenced by the almost identical CV traces obtained in both electrolytes during anodic scans. Thus, the electrochemical stability window should envelop the redox potentials of the electrochemical couple LiMn2O4 and TiO2. In fact, the CV conducted on these active electrode materials shows the characteristic redox peaks expected, that is, 4.46 V/4.30 V and 4.31 V/4.17 V for spinel LiMn2O4, and 2.36 V/1.83 V for anatase TiO2 (Figure 2a).

An average voltage output of 2.1 V is provided by this electrochemical couple in a full Li-ion cell, which represents the highest voltage aqueous LIBs reported to date (Figure 2d). As shown in Table 1, the theoretical energy density
of such cells should reach 157 Wh kg⁻¹ based on total electrode (cathode and anode) weight.

Given the fact that TiO₂-based materials are potent catalysts for water-splitting, it is counter-intuitive to adopt it as anode material of choice in any aqueous electrolyte, as the ability to accelerate hydrogen-generation goes against the goal of stabilizing water during lithiation/de-lithiation. The high surface activity of nano-sized TiO₂ makes their application in anode materials seem even harder. In addition, the intrinsic low electronic conductivity of TiO₂ particles (5 nm) after 10 cycles (Figure 4b–d), whose inter-

is highly conductive electronically but inert electro-catalytically, was applied on the TiO₂ surface via carbothermal reduction. Detailed characterizations of carbon-coated TiO₂ (hereafter denoted as C-TiO₂) are summarized in Figure S4–6 (XRD, TEM images and Raman spectra, SEM images and thermogravimetric analysis (TGA)). It seems that the TiO₂ particle morphology remains unchanged after carbon coating, while the coating is present as a rather uniform layer at the thickness of 1–2 nm, which almost makes the bulk TiO₂ invisible to the Raman. XRD further confirms that C-TiO₂ retains the pure anatase phase, while the carbon content accounts for about 12% by weight according to TGA.

The electrochemical performances of full Li-ion cells based on LiMn₂O₄/C-TiO₂ or LiMn₂O₄/TiO₂ are shown in Figure 3 and Figure S7.8. To compensate the irreversible Li consumption during SEI formation, the mass ratio of LiMn₂O₄ to C-TiO₂ or TiO₂ is set to be 2:1. Much higher reversible capacity (48 mAh g⁻¹) and coulombic efficiency of 80.0% were obtained in the first cycle when LiMn₂O₄/C-TiO₂ full cell was cycled in WIBS electrolyte, as compared to the 45 mAh g⁻¹ and of 57.8% obtained in WIS electrolyte. An average voltage output of 2.1 V leads to an energy density above 100 Wh kg⁻¹, which to our knowledge is the highest among all the aqueous Li-ion batteries reported. The discharge capacity slightly decreased but stabilized after 10 cycles (Figure 3b), accompanied by the coulombic efficiency approaching above 99% after 40 cycles (Figure 3d). This stabilization process indicates that the gradual formation of SEI within 40 cycles. In comparison, the same full cell in WIS electrolyte with LiTF SI as the single salt has to undergo above 60 cycles before its coulombic efficiency approaches 97%. The addition of the 7 m LiOTf in electrolyte significantly improves the cycling stability of LiMn₂O₄/C-TiO₂, apparently due to the more effective SEI. On the other hand, in the absence of carbon-coating, faster capacity decay was observed even when WIS electrolyte was used (Figure 3c), because on the active surfaces of the bare TiO₂, the SEI formation is seriously hindered due to substantial hydrogen evolution. It was the synergistic effects of carbon-coating on TiO₂ and the ultra-high salt concentration in water-in-bisalt electrolyte that are responsible for the excellent cycling stability for LiMn₂O₄/C-TiO₂ full Li-ion cell, with a low capacity decay rate of 0.22% per cycle (Figure 3c and corresponding EIS data show in Figure S8) and high coulombic efficiency of 99% after 40 cycles (Figure 3d). The excellent storage performance of full cell (LiMn₂O₄/WIBS/C-TiO₂) is also demonstrated by self-discharge test at 100% stage of charge (SOC; Figure S9).

A post-mortem analysis revealed the C-TiO₂ surface chemistries under varying conditions (cycle number and rate). TEM clearly imaged numerous isolated nano-sized crystalline particles (5 nm) after 10 cycles (Figure 4b–d), whose inter-

Figure 2. The cyclic voltammetry (CV) of electrolytes on different electrodes. a) the electrochemical windows of WIBS (21 m LiTF SI + 7 m LiOTF) and WIS (21 m LiTF SI) electrolyte as measured on inactive current collector (stainless-steel grid) at scanning rate of 10 mVs⁻¹, which is overlaid with the 1st CV traces collected on active anode (C-TiO₂) and cathode (LiMn₂O₄) materials at scanning rate of 0.1 mVs⁻¹ in the same electrolyte; b) and c) the enlarged regions near anodic and cathodic extremes of the electrochemical windows on inactive current collector; d) the output voltages generated by established and our proposed electrochemical couples (LiMn₂O₄/LiTiPO₄)⁻ LiMn₂O₄/Mn₂S₄⁰ and LiMn₂O₄/TiO₂⁻.2
The estimated and actual energy densities of aqueous Li-ion cells based on established and proposed electrochemical couples.

<table>
<thead>
<tr>
<th>Electrochemical couples (LiMn₂O₄/Anode)</th>
<th>Theoretical capacity [Ah kg⁻¹]</th>
<th>Average discharge voltage [V]</th>
<th>Projected energy density [Wh kg⁻¹]</th>
<th>Actual energy density [Wh kg⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiTi₂(PO₄)₆</td>
<td>148/138</td>
<td>1.5</td>
<td>107</td>
<td>60 (Ref. [6])</td>
</tr>
<tr>
<td>Mo₅S₄</td>
<td>148/128</td>
<td>1.5–ca. 2.0</td>
<td>125</td>
<td>84 (Ref. [3a])</td>
</tr>
<tr>
<td>TiO₂[PO₄]_₂</td>
<td>148/150</td>
<td>2.1</td>
<td>157</td>
<td>100 (this work)</td>
</tr>
</tbody>
</table>

Note: [a] the theoretical capacity of TiO₂ is estimated on the basis of the typical discharge profile and cutoff at the end of discharge plateau not including the following slope at low potential. [b] Theoretical energy densities are calculated based on total electrode (cathode and anode) weight and the cathode and anode match by the Li molar ratio = 1:1.

Quantum chemical calculations shown in Figure 5 indicate that the LiOTf contact ion pairs have reduction potential below that of hydrogen evolution, while the ionic aggregates, in which the anions are coordinated by multiple Li⁺, have reduction potentials above that of hydrogen evolution, yielding LiF as the reduction product. The reorganization energies for the LiOTf and LiTFSI aggregates during reduction and LiF formation were also found to be similar indicating that both salts are likely to contribute to SEI formation at approximately the same rate (Figure S11). MD simulations predicted that most anions in the bisalt electrolyte are coordinated by two or three Li⁺ cations supporting the choice of model compounds for QC calculations. Moreover, addition of 7 mL LiOTf to 21 mL LiTFSI solution not only displaced around 0.5 waters per Li⁺ solvation shell but also reduced the fraction of free water from 0.15 to 0.11. “Free water” refers to water molecules that remain uncoordinated by any Li⁺ ions. A diminished fraction of free water further contributes to the enhanced redox stability of electrolyte.

Based on the above observations, we conclude that the unprecedented high cell voltage (2.5 V), energy density (100 Wh/Kg) and excellent cycling stability are achieved in an aqueous full Li-ion cell based on the electrochemical couple of LiMn₂O₄ and C-TiO₂ via deactivation of the catalytic surface of nano-sized TiO₂ with carbon-coating and super-concentrated aqueous electrolyte with salt-mixing. The catalytically inert carbon effectively introduced an extra kinetic barrier to water splitting, while its high electron conductivity significantly reduces charge transfer resistance as well as ohmic polarization. On the other hand, the ultra-high salt concentration in the new bisalt electrolyte makes it easier for the salt anion to be reduced, thus providing the opportunity to form a more protective SEI before hydrogen evolution. Additional benefits of the super-concentrated aqueous electrolyte also include the further reduction in electrochemical activity of water, while depressing the

Figure 3. Electrochemical performance of full Li-ion cells based on LiMn₂O₄ cathode and C-TiO₂ or TiO₂ anode materials at the rate of 0.5 C (75 mAg⁻¹) between 0.8–2.5 V. a) The first charge–discharge profiles of the electrochemical couples of LiMn₂O₄/C-TiO₂ in WIBS (black) and WIBS (blue), the Coulombic efficiencies are labeled in the graph; b) The charge–discharge profiles of the electrochemical couple of LiMn₂O₄/C-TiO₂ in WIBS at the 2nd, 5th, and 100th cycles. c) and d) The cycling stability and Coulombic efficiencies for varying combinations of TiO₂ anode and electrolyte.

Table 1: The estimated and actual energy densities of aqueous Li-ion cells based on established and proposed electrochemical couples.
Such improvements enabled our continued efforts of pushing the energy densities of aqueous Li-ion cells to a level closer to those of the state-of-the-art LIB, while keeping the cells absolutely nonflammable.

In summary, we proposed a new class of electrolyte termed a “water-in-bisalt” (WIBS) electrolyte with a wider electrochemical stability window and lower water activity. The unprecedented high ionic density in the solution effectively suppresses hydrogen evolution and promotes the formation of a more protective SEI. A full Li-ion cell based on LiMn$_2$O$_4$ and C-TiO$_2$ is demonstrated in such an electrolyte, which delivered the highest average discharge voltage (2.1 V) and energy density (100 Wh kg$^{-1}$) among all rechargeable aqueous Li-ion batteries reported thus far. The introduction of a second or even more salts into the water-in-salt electrolyte could pave the pathway to more energetic aqueous Li-ion batteries with energy densities competitive against the state-of-the-art lithium-ion batteries.

Figure 4. Post-mortem analysis on the cycled anatase C/TiO$_2$ in water-in-bisalt electrolyte. a) the schematic illustration of TiO$_2$ surface pre-coated by carbon and in situ coated by SEI, b)–d) TEM images of C-TiO$_2$ recovered after 10 cycles at 0.5 C and e) after 143 cycles at 1 C. Red and blue broken lines denoted outer and inner edge of SEI layer, white arrows and dotted circles marked the crystal domain of SEI in anode surface; f) and g) X-ray photoelectron spectroscopy (XPS) of C-TiO$_2$ electrode before and after 10 cycles at 0.5 C, respectively.

Figure 5. a) Reduction stability of LiOTf complexes versus Li/Li$^{+}$ from G4MP2 and M05-2X/6-31 + G(d,p) (in parentheses) QC calculations with surrounding water represented using a water implicit solvent model; b) a schematic representation of the influence of addition of 7 m LiOTf on the solvate structure and the composition of the Li$^+$ first coordination shell extracted from MD simulations with the focus on oxygen atoms (purple Li, red O, green F, yellow S, gray C, white H and blue N).

Table: Anion (OTf) reduction potential (V) vs Li

<table>
<thead>
<tr>
<th>Anion (OTf)</th>
<th>Reduction Potential (V) vs Li</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiOTf</td>
<td>0.2 V (+0.15 V)</td>
</tr>
<tr>
<td>LiOTf</td>
<td>1.92 V (+1.80 V)</td>
</tr>
<tr>
<td>3. H$_2$O</td>
<td>2.63 V</td>
</tr>
<tr>
<td>4. Li$_2$OTf</td>
<td>2.77 V (+2.66 V)</td>
</tr>
<tr>
<td>5. Li$_3$(OTf)$_2$</td>
<td>2.68 V</td>
</tr>
</tbody>
</table>

Figure 5. a) Reduction stability of LiOTf complexes versus Li/Li$^{+}$ from G4MP2 and M05-2X/6-31 + G(d,p) (in parentheses) QC calculations with surrounding water represented using a water implicit solvent model; b) a schematic representation of the influence of addition of 7 m LiOTf on the solvate structure and the composition of the Li$^+$ first coordination shell extracted from MD simulations with the focus on oxygen atoms (purple Li, red O, green F, yellow S, gray C, white H and blue N).
Acknowledgements

C.W. and K.X. gratefully acknowledge funding from DOE ARPA-E (DEAR000389). We also thank the support of the Maryland Nano Center and its Nisp Lab and SAC Lab, and Dr. Karen Gaskell for their technical support and helpful discussion. Modeling efforts were supported by ARL Enterprise for Multiscale Research of Materials.

Keywords: anatase TiO$_2$ · aqueous batteries · electrolyte · lithium-ion batteries · water-in-bisalt

How to cite: Angew. Chem. Int. Ed. 2016, 55, 7136–7141

Angew. Chem. 2016, 128, 7252–7257

Received: March 9, 2016
Published online: April 27, 2016