


409. Clarifying the glass transition behavior of water by comparison with hyperquenched inorganic glasses. Y.-Z, Yue and C. A. Angell, Nature, 427, 717-721, 2004


416. Potential Energy, Relaxation, Vibrational Dynamics and the boson peak, of hyperquenched glasses. C. A. Angell, Yuanzheng Yue, Limin Wang, John R. D. Copley, Steve


457. Parallel developments in inorganic, aprotic, and protic ionic liquids: physical chemistry and applications” C. Austen Angell, Nolene Byrne and Jean-Philippe Belieres, Accounts of Chemical Research (special issue on Ionic Liquids) 40, 1228-1236, (2007)


460. Directed destabilization of lysozyme in protic ionic liquids reveals a new low energy reversibly unfolding (pre-fibril) state. Nolene Byrne, Jean-Philippe Belieres, C. Austen Angell, arXiv.org.abs/0710.3807
