Notes from Class of 3-02-06
Introduction
We need to know Bayesian networks before we can apply them.

There are two major applications:

1. Gene Regulatory Networks

Given a matrix of expression data: 

	
	Gene 1
	Gene 2
	Gene 3

	Sample 1
	Exp Value 11
	Exp Value 12
	Exp Value 13

	Sample 2
	Exp Value 21
	Exp Value 22
	Exp Value 32

	Sample 3
	Exp Value 31
	Exp Value 32
	Exp Value 33


We want to figure out connections between the different genes.

Boolean Networks such as G4 = (G1 or G2) and G3 are deterministic, but sometimes it is better to have a probabilistic view. Supposing that the Bayesian network is ok we could get it from the expression table

2. We want to know p(G1 -> G2 | D1, D2), or more generally we want p (Inf | Data) which by Bayes can be computed as p(Data | Inf) p(Inf) / p(Data)

Backward Reasoning
Recall from previous class


[image: image1]
Last time we computed p(Q| P4, P5), which is an example of forward reasoning. Today we are doing an example of backward reasoning: p(Q | P11, P12, P13, P14).

For forward reasoning we want to introduce the parents. For backward reasoning we want to flip forward the equation. In this case we have:
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To compute p(P11, P12, P13, P14 | Q) we need to identify the independent groups given Q. Consider for example A = (P12, P13) and B = (P11, P14). Since all possible paths from A to B are of the form <- Q -> we can apply the D-separation theorem and conclude that A and B are independent given Q. And so we have p(P11, P12, P13, P14 | Q) equals p(P11, P14 | Q) times p(P12, P13 | Q).

Furthermore P11 and P14 are independent given Q because the unique path from P14 to P15 has this form  -> P15 <-. And since P11 is independent of Q we have
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In order to compute p(P14 | Q) we need to introduce its parents and so we get p(P14 | Q) equals 

p(P14, P10 | Q) + p(P14, ~P10 | Q).

To compute p(P14, P10 | Q) we note that it equals
p(P14 | P10, Q) p(P10 | Q)

which in turn equals

p(P14 | P10) p(P10 | Q)

And so on.

Mixed Reasoning

We have seen examples of forward reasoning and of backward reasoning; we could also have mixed reasoning. Consider for example p( Q | E-, E+) where E- is a group of descendants of Q and E+ is a group of ancestors of Q. In order to compute this we try to flip p(Q | E-) to p(E- | Q) to obtain:
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Learning Bayesian Nets

Learning has two aspects:

· learning parameters when we already know the network

· learning the network

A Bayesian network with a given conditional probability table is a compact way of representing a joint probability density. Consider for example the network
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And the following experiment results
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And the rest of the information is missing.

We want to compute the following table
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Using the definition for conditional probability we get p(M | B , L) = p (M, B, L) / p (B, L).

In general we want to find the parameters that maximizes p(parameters | data) which is given by the equation 

p(parameters | data)  = p (data | parameters) p (parameters) / p (data)

Now, what do we do about missing data?

On the other hand what do we do when we don’t know the network. In order to do this we need to define how good a network is in comparison to another, and we need to know how many networks are there.
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