CSE 591 - FALL 03.

Chitta Baral
Department of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287-5406 USA
chitta@asu.edu

http://www.public.asu.edu/~cbaral/cse571-f99/

October 12, 2003
PROBABILITY, BAYES NETS AND CAUSALITY
Basic Concepts in probability theory

- 3 basic axioms of probability calculus in the Bayesian formalism
 - \(0 \leq P(A) \leq 1 \)
 - \(P(\text{Sure proposition}) = 1 \)
 - \(P(A \lor B) = P(A) + P(B) \), if \(A \) and \(B \) are mutually exclusive.
 * \(P(A) = P(A, B) + P(A, \neg B) \)
 (\(P(A, B) \) is short for \(P(A \land B) \))
 * If \(B_i, i = 1, 2, \ldots, n \) is a set of exhaustive and mutually exclusive propositions (called a partition or a variable), then
 \[
P(A) = \sum_i P(A, B_i)
 \]
- Basic expression in Bayesian formalism
 - Conditional probabilities of the form \(P(A|B) \)
– means: belief in \(A \) under the assumption that \(B \) is known with absolute certainty.

– \(P(A|B) = P(A) - A \) and \(B \) are independent.

– \(P(A|B, C) = P(A|C) - A \) and \(B \) are conditionally independent given \(C \).

– Dawid’s notation: \((A \perp B|C) \)

– Bayesian philosophers see the conditional relationship as more basic than that of joint events.

\[
P(A \land B) = P(A|B)P(B)
\]
Bayesian Networks

- Goal:
 - to provide convenient means of expressing substantive assumptions
 - to facilitate economical representations of joint probability functions
 - to facilitate efficient inferences from observations

- Idea: Directed acyclic graphs is used to represent causal or temporal relationship

- Basic decomposition scheme

\[
- P(A \land B) = P(A|B)P(B)
- P(x_1, x_2, x_3) = P(x_1 \land x_2 \land x_3) = P(x_1|x_2, x_3)P(x_2 \land x_3) = P(x_1|x_2, x_3)P(x_2|x_3)P(x_3)
\]
In general,

\[P(x_1, \ldots, x_n) = \prod_j P(x_j | x_1, \ldots, x_{j-1}) \]

* Let \(PA_j \subseteq \{x_1, \ldots, x_{j-1}\} \), such that \(x_j \) is independent of \(\{x_1, \ldots, x_{j-1}\} \setminus PA_j \) once we know the value of \(PA_j \).

* We can then write

\[P(x_j | x_1, \ldots, x_{j-1}) = P(x_j | pa_j) \]

* If \(PA_j \) is a minimal set of predecessors of \(X_j \) that renders \(X_j \) independent of all its other predecessors, then \(PA_j \) is said to be **Markovian parents** of \(X_j \).

- **Markov factorization**: If a probability function \(P \) admits the factorization

\[P(x_1, \ldots, x_n) = \prod_j P(x_j | parents_j) \]

relative to a DAG \(G \), we say \(G \) represents \(P \), that \(G \) and \(P \) are compatible, or \(P \) is Markov relative to \(G \).
Inference with Bayesian Networks

• Prediction and abduction
 – x – a set of observations
 – y – a set of variables deemed important for prediction or diagnosis
 – Need to compute $P(y|x)$.

\[
P(y|x) = \frac{p(y, x)}{p(x)} = \frac{\sum_s P(y, x, s)}{\sum_{y,s} P(y, x, s)}
\]

• An example:
 – The Network

* $P(tampering) = 0.02; P(fire) = 0.01$
* Directed Edges: $(tampering, alarm), (fire, alarm), (fire, smoke), (alarm, leaving), (leaving, report)$
* local probability distributions:
 \[P(\text{alarm}| \text{fire, tampering}) = 0.5; \]
 \[P(\text{alarm}| \text{fire, } \neg \text{tampering}) = 0.99; \]
 \[P(\text{alarm}| \neg \text{fire, tampering}) = 0.85; \]
 \[P(\text{alarm}| \neg \text{fire, } \neg \text{tampering}) = 0.0001. \]
 \[P(\text{smoke}| \text{fire}) = 0.9; P(\text{smoke}, \neg \text{fire}) = 0.01. \]
 \[P(\text{leaving}| \text{alarm}) = 0.88; P(\text{leaving}| \neg \text{alarm}) = 0.001. \]
 \[P(\text{report}| \text{leaving}) = 0.75; P(\text{report}| \neg \text{leaving}) = 0.01. \]

– Different kinds of inferences

 * Diagnostic inferences: \(P(\text{fire}| \text{report}) \)
 * Causal inferences (prediction): \(P(\text{leaving}| \text{tampering}) \)
 * Intercausal inferences: \(P(\text{fire}| \text{alarm, tampering}) \)
 * Mixed inferences: \(P(\text{alarm}| \text{report, fire}) \)

– An illustration:

\[
P(\text{tampering}| \text{report, smoke}) = \frac{P(\text{tampering, report, smoke})}{P(\text{report, smoke})}
\]
\[
\frac{\sum_{\text{leaving, alarm, fire}} P(\text{tampering} = T, \text{report} = T, \text{smoke} = T, \text{leaving, alarm, fire})}{\sum_{\text{tampering, leaving, alarm, fire}} P(\text{report} = T, \text{smoke} = T, \text{tampering, leaving, alarm, fire})}
\]

* Let us compute the denominator \(D\) first.

\[
\sum_{\text{tampering, leaving, alarm, fire}} P(\text{tampering}) P(\text{fire}) \\
P(\text{smoke} = T \mid \text{fire}) P(\text{alarm} \mid \text{tampering, fire}) \\
P(\text{leaving} \mid \text{alarm}) P(\text{report} = T \mid \text{leaving})
\]

\[
= \sum_{\text{tampering, leaving, alarm}} P(\text{tampering}) P(\text{leaving} \mid \text{alarm}) \\
P(\text{report} = T \mid \text{leaving}) \sum_{\text{fire}} P(\text{fire}) P(\text{smoke} = T \mid \text{fire}) \\
P(\text{alarm} \mid \text{tampering, fire})
\]

* Let \(f_1(\text{alarm, tampering}) = \sum_{\text{fire}} P(\text{fire}) P(\text{smoke} = T \mid \text{fire}) \\
P(\text{alarm} \mid \text{tampering, fire})\)

Now let us compute \(f_1(\text{alarm} = T, \text{tampering} = T)\)

\[
= \sum_{\text{fire}} P(\text{fire}) P(\text{smoke} = T \mid \text{fire}) \\
P(\text{alarm} = T \mid \text{tampering} = T, \text{fire})
\]

\[
= P(\text{fire} = T) P(\text{smoke} = T \mid \text{fire} = T) \\
P(\text{alarm} = T \mid \text{tampering} = T, \text{fire} = T) + \\
P(\text{fire} = F) P(\text{smoke} = T \mid \text{fire} = F) \\
P(\text{alarm} = T \mid \text{tampering} = T, \text{fire} = F)
\]
\[= 0.01 \times 0.9 \times 0.5 + 0.99 \times 0.01 \times 0.85 \]

Similarly, we can also compute \(f_1(\text{alarm} = T, \text{tampering} = F) \), \(f_1(\text{alarm} = F, \text{tampering} = T) \) and \(f_1(\text{alarm} = F, \text{tampering} = F) \).

* We can now write the denominator as:

\[
\sum_{\text{tampering, leaving, alarm}} P(\text{tampering}) \ P(\text{leaving}|\text{alarm}) \\
P(\text{report} = T|\text{leaving}) \ f_1(\text{alarm, tampering}) \\
= \sum_{\text{tampering, leaving}} P(\text{tampering}) \ P(\text{report} = T|\text{leaving}) \ \sum_{\text{alarm}} \\
P(\text{leaving}|\text{alarm}) \ f_1(\text{alarm, tampering})
\]

Let us denote \(\sum_{\text{alarm}} P(\text{leaving}|\text{alarm}) \ f_1(\text{alarm, tampering}) \) by \(f_2(\text{leaving, tampering}) \). We can compute it as we compute \(f_1 \)

* The denominator can now be written as:

\[
= \sum_{\text{tampering, leaving}} P(\text{tampering}) \ P(\text{report} = T|\text{leaving}) \\
f_2(\text{leaving, tampering}) \\
= \sum_{\text{tampering}} P(\text{tampering}) \ \sum_{\text{leaving}} P(\text{report} = T|\text{leaving}) \\
f_2(\text{leaving, tampering})
\]

Let us denote \(\sum_{\text{leaving}} P(\text{report} = T|\text{leaving}) \)
\(f_2(\text{leaving}, \text{tampering}) \) by \(f_3(\text{tampering}) \) and compute it like the other \(f_i \)'s.

* The denominator can now be written as:

\[
\Sigma_{\text{tampering}} P(\text{tampering}) f_3(\text{tampering})
\]

- **Main Issues and challenges**
 - Computing the conditional probabilities efficiently
 - Inference in general networks in NP-hard
 - Many efficient algorithms are defined for particular kind of networks (say for trees).
 * Algorithm based on message passing architecture for trees.
 * Join-tree propagation
 * Cutset conditioning
 * Hybrid combinations of the above two
 * Approximation methods: stochastic simulation.
Causal Bayesian Networks

• Motivation

 – A joint distributions tells us how probable events are and how probabilities would change with subsequent observations.
 – A causal model also tells us how these probabilities would change as a result of external interventions.
 Such a change can not be deduced from a join distribution even if fully specified.

• Importance

 – Difference between observing the alarm is on, and turning the alarm on.
 – $P(\text{fire}|\text{alarm}) > 0.01$.
 But $P(\text{fire}|\text{do(alarm} = T)) = P(\text{fire}) = 0.01$
• Causal networks can predict the effect of actions. (Simple joint
distributions can not.)

• Stability and autonomy
 – Autonomy: It is possible to change one parent child relationship in
 the network without changing the others.
 – Stability: One can predict the effect of external interventions with
 minimum of extra information.
 – Autonomy and intervention: Instead of specifying a new probability
 function for each of the many possible interventions, we specify
 merely the immediate changes implied by the intervention. Because
 of autonomy, the change is local.

• Definition: Causal Bayesian network
 Let $P(v)$ be a probability distribution on a set V of variables, and let
 $P_x(v)$ denote the distribution resulting from the intervention
 $do(X = x)$ which sets any subset X of variables to constants x.
 Denote by $P*$ the set of all interventional distributions $P_x(v), X \subseteq V,$
including $P(v)$ which represents no intervention. A DAG G is said to be a **causal Bayesian network** compatible with $P*$ iff the following three conditions hold for every $P_x \in P*$.

1. $P_x(v)$ is Markov relative to G.
2. $P_x(v_i) = 1$, for all $V_i \in X$, whenever v_i is consistent with $X = x$.
3. $P_x(v_i | pa_i) = P(v_i | pa_i)$ for all $V_i \not\in X$, whenever pa_i is consistent with $X = x$.

Properties:

- for all v consistent with x:

$$P_x(v) = \prod_{\{i| V_i \not\in X\}} P(v_i | pa_i)$$

- For all i, $P(v_i | pa_i) = P_{pa_i}(v_i)$

 (The above ensures, conditional probabilities with respect to parents, corresponds to causal effects.)
– For all i, and for every subset S of variables disjoint of $\{V_i, PA_i\}$ we have: $P_{pa_i,s}(v_i) = P_{pa_i}(v_i)$

(Expresses invariance of causality)

• Causal relationship is more stable than probabilistic relationships.

– Causal relationship remains unaltered as long as no change has taken place in the environment, even when our knowledge about the environment undergoes change.

* $(season, sprinkler)$, $(season, rain)$, $(sprinkler, wet)$, $(rain, wet)$, $(wet, slippery)$.

* S_1 – Turning the sprinkler on would not affect rain

* S_2 – The state of the sprinkler is independent of the state of the rain.

* S_2 changes from false to true when we learn what season it is.

* Given that we know the season, S_2 changes from true to false once we observe that the pavement is wet.
* S_1 remains true regardless of what we learn or know about the season or the pavement.
* Falling barometer predicts rain, does not explain it.
Functional Causal Models

- Two views of non-determinism
 - Laplace’s (1814) conception of natural phenomena:
 Nature’s laws are deterministic, and randomness surfaces merely due to our ignorance of the underlying boundary condition.
 - Modern (quantum mechanical) conception of physics:
 All relationships are inherently stochastic.

- Why Pearl’s book uses Laplace’s conception of causality
 - Besides the fact that it is used in genetics, econometrics and social sciences
 - It is more general.
 * Every stochastic model can be emulated by many functional relationships (with stochastic inputs), but not the other way round;
* Functional relationships can only be approximated as a limiting case, using stochastic models.
 – Laplacian conception is more in tune with human intuition.
 – Certain important concepts can only be defined in Laplacian framework (i.e., they can not be defined in terms of purely stochastic models.)

* the probability that event B occurred due to event A.
* the probability that event B would have been different if it were not for event A
 (they are called counterfactuals)

• (Functional) causal model:
 A causal model is a triple $M = \langle U, V, F \rangle$ where
 – U is a set of background (or exogenous, or error) variables, that are determined by factors outside the model.
 – V is a set $\{V_1, \ldots, V_n\}$ of variables, that are determined by the variables in $U \cup V$.
- F is a set of functions $\{f_1, \ldots, f_n\}$ giving rise to a set of structural equations of the form: $x_i = f_i(pa_i, u_i)$, $i = 1, \ldots, n$

- Types of queries that can be answered using functional causal models
 - **Prediction**: Would the pavement be slippery if we *find* the sprinkler off?
 - **Interventions**: Would the pavement be slippery if we *make sure* that the sprinkler is off?
 - **Counterfactuals**: Would the pavement be slippery *had* the sprinkler been off, given that the pavement is in fact not slippery and the sprinkler is on?

- Prediction using Markovian causal models:
 - Causal diagram: A graph obtained by having edges from each member of PA_i to X_i.
 - If the causal diagram is acyclic then the corresponding model is called semi-Markovian.
* the values of X variables will be uniquely determined by the U variables.

* The joint distribution $P(x_1, \ldots, x_n)$ is determined uniquely by the distribution $P(u)$ of the error variables.

– If in addition the error terms are mutually independent, the model is called *Markovian*.

– Theorem (Pearl and Verma): Every Markovian causal model M induces a distribution $P(x_1, \ldots, x_n)$ that satisfies the Markov condition relative to the causal diagram G associated with M, that is each variable X_i is independent on all its non-descendants, given its parents PA_i in G.

– Theorem (Drudgel and Simon): For every Bayesian network G characterized by a distribution P, there exists a function model that generates a distribution identical to P.

– Advantages of doing prediction using causal-functional specification over the probabilistic specification

 * When organizing knowledge using Markov causal models reliable
assertions about conditional independence can be made without assessing numerical probabilities. (They come later when writing what \(f \) exactly is and what the \(P(u_i) \)'s are.)

* Functional specification is often more meaningful, natural and yields a smaller number of parameters.

* Judgemental assumptions of conditional independence of observable quantities are simplified, and made more reliable, when cast directly as judgments about the presence or absence of unobserved common causes. (Instead of judging whether each variable is independent of all its nondescendants, given its parents, we need to judge whether the parent set contains all relevant immediate causes, namely whether two omitted factors (say \(U_i \) and \(U_j \)) share a common cause.

* When some conditions in the environment undergo change, it is simpler to reassess (judgmentally) or reestimate (statistically) the model parameters knowing that the change is local, affecting just a few parameters, than reestimating the whole model from
scratch.

- Interventions and causal effects in functional models.
 - Submodels of causal models:
 Let M be a causal model, X be a set of variables in V, and x be a particular realization of X. A submodel M_x of M is the causal model $M_x = \langle U, V, F_x \rangle$, where
 \[F_x = \{ f_i : V_i \not\in X \} \cup \{ X = x \}. \]
 - Effects of actions on a causal model: The effect of action $do(X = x)$ on a causal model M is given by the submodel M_x.
 - Effects of actions on other variables: The potential response (or value) of a variable Y in V after an action $do(X = x)$ denoted by $Y_x(u)$ is the solution for Y using the set of equations F_x.
 - Advantages over stochastic models
 * The analysis of interventions can be directly extended to cyclic models.
 \[(demand = f(price, income, u_1); price = f'(demand, cost, u_2)\]
* Analysis of causal effects in non-Markovian models will be greatly simplified using functional models.
 (Because: There are infinitely many conditional probabilities $P(x|pa_i)$, but only finite number of functions $x_i = f_i(pa_i, u_i)$, among discrete variables X_i and PA_i.)

- **Counterfactuals**
 - Why we can not use causal Bayes nets.
 * Counterfactuals involve dealing with both actions and observations. (Effect of a drug on a patient with certain symptoms.)
 * The observations alter the conditional probabilities.
 - An example illustrating the inadequacy of using causal Bayes nets.
 * X denotes a treatment.
 * $Y = 0$ means recovery and $Y = 1$ means death.
 * Q: A certain patient Joe, took the treatment and died. Our question is whether Joe’s death occurred *due* to the treatment.
I.e., What is the probability that Joe (or any patient for that matter), who died under treatment \((x = 1, y = 1)\) would have recovered \((y = 0)\) had he not been treated \((x = 0)\).

* An extreme case: 50% of the patients recover and 50% die in both the treatment and the control groups. (assume sample size to be infinite.) I.e. \(P(y|x) = \frac{1}{2}\).

* Bayes net 0: edge-less, with \(P(y, x) = 0.25\), for all \(x\) and \(y\)

* Functional model 1: \(x = u_1, y = u_2\), with \(P(u_1 = 1) = P(u_2 = 1) = \frac{1}{2}\).

* Functional model 2: \(x = u_1, y = xu_2 + (1 - x)(1 - u_2)\), with \(P(u_1 = 1) = P(u_2 = 1) = \frac{1}{2}\).

* Both functional model 1 and 2 correspond to the same joint probability \(P(y, x) = 0.25\), for all \(x\) and \(y\). But will give different answers.
Answering Q using model 1 and model 2

| y | u_2 | x | P_{model1}(y|u_2, x) | P_{model2}(y|u_2, x) |
|---|-----|---|---------------------|---------------------|
| 0 | 0 | 0 | 0.25 | 0 |
| 0 | 0 | 1 | 0.25 | 0.25 |
| 0 | 1 | 0 | 0 | 0.25 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0.25 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0.25 | 0 |
| 1 | 1 | 1 | 0.25 | 0.25 |

Using model 1 the answer to Q would be 0.
Intuitively: the treatment has no effect. 50% die and 50% recover.

Using model 2 the answer to Q would be 1.
Intuitively, the treatment kills 50% of the people and cures the other 50%.
• Answering counter-factual queries using functional models.

 – Counterfactual: Let Y be a variable in V in the causal model $M = \langle U, V, F \rangle$. The counterfactual sentence “The value that Y would have obtained, had X been x” is interpreted as denoting the potential response $Y_x(u)$.

 – Probabilistic causal model: Is a pair $\langle M, P(u) \rangle$, where M is a causal model and $P(u)$ is a probability function defined over the domain of U.

 * $P(y) = P(Y = y) = \sum_{\{u|Y(u) = y\}} P(u)$
 * $P(Y_x = y) = \sum_{\{u|Y_x(u) = y\}} P(u)$
 * $P(Y_x = y, X = x') = \sum_{\{u|Y_x(u) = y \& X(u) = x'\}} P(u)$
 * $P(Y_x = y, Y_{x'} = y') = \sum_{\{u|Y_x(u) = y \& Y_{x'}(u) = y'\}} P(u)$

 – One purpose of counter-factuals: We want to show that the event $X = x$ was the cause of the event $Y = y$.

 – So we ask the question: What is the probability that Y would not be equal to y had X not been equal to x?
To answer the above we need to evaluate $P(Y_{x'} = y'|X = x, Y = y)$

Given M, a three step procedure to evaluate the conditional probability $P(B_A|e)$ of a counter-factual sentence “If it were A then B,”, given evidence e.

(e is $X = x$ and $Y = y$. A is $X \neq x$.)

* Abduction: Update $P(u)$ by the evidence e, to obtain $P(u|e)$. (explain the past (U) in light of the current evidence e.)

* Action: Modify M by the action $do(A)$ to obtain M_A. (minimally bend the course of history, to comply with the hypothetical condition $X \neq x$)

* Prediction: Use the modified model $\langle M_A, P(u|e) \rangle$ to compute the probability of B. (predicting the future (Y) on the basis of the above 2 steps.)
Evaluating Counter-factuals: an example

• The Causal relationship in a 2-man firing squad:
 – Nodes
 * U: Court orders the execution.
 * C: Captain gives a signal.
 * A: Rifleman-A shoots.
 * B: Rifleman-B shoots.
 * D: Prisoner dies.
 – Edges: (U, C), (C, A), (C, B), (A, D), (B, D).

• Logical structural equations
 – C ⇔ U
 – A ⇔ C
 – B ⇔ C
\[D \Leftrightarrow A \vee B \]

- Questions that we want to answer:
 - (prediction) : If the rifleman did not shoot, the prisoner would be alive.
 - (abduction) : If the prisoner is alive, then the captain did not signal.
 - (transduction) : If rifleman-A shot, then \(B \) shot as well.
 - (action) : If the captain gave no signal and rifleman-A decides to shoot, the prisoner will dies and \(B \) will not shoot.
 - (counter-factual) : If the prisoner is dead, then even if \(A \) were not to have shot, the prisoner would still be dead.

- Probabilistic analysis: a modification of the story
 - There is a probability \(P(u = 1) = p \) that the court has ordered the execution.
 - Rifleman-A has a probability \(q \) of pulling the trigger out of nervousness. \((w = 1) \)
– Rifleman-A’s nervousness is independent of U.
– We wish to compute the probability that the prisoner would be alive if A were not to have shot, given that the prisoner is in fact dead.
– The solution steps:
 * (abduction) : $P(u, w|D)$
 * (action) :
 * (prediction) :