deepthi chidambaram

993 72 2731

deepthi chidambaram

993 72 2731

deepthi chidambaram

student id 993 72 2731

CSE 571-artificial intelligence
scribe notes for 10/15/2003
Reasoning about actions and planning in AnsProlog*
Temporal Projection in AnsProlog ┐ formulation with complete and incomplete observations
The language A being used for discussion consists of a set of fluents F, and a set of actions A. The domain description language D of the language A consists of effect propositions, whereas the observation language consists of value propositions. The Query language is used to query the descriptions, and contain value propositions.

Temporal projections are formulations of the language A in which the observations are of the form

initially f
The lecture discussed AnsProlog ┐ formulations for the temporal projections. The language A consist of the sub languages defined as below:
The domain description language D

a causes f

if p1,p2,….pm, ~q1,~q2,….,~qn

a causes ~g

if p1,p2,….pm, ~q1,~q2,….,~qn
The observation language O is given by

initially f.

initially ~g.

The query language would be

f after a1 , a2 ,….an .

~g after a1 , a2 ,….an .

The formulations in the previous lecture were done in AnsProlog, without the use of the classical negation. The closed world assumption was followed, in which negation was considered by default in case of failure to prove the fact.

The AnsProlog ┐ formulations use the classical negation to encode the languages described above. The translation of the above sub languages in AnsProlog ┐ would be as follows
D:

holds (f, res (a, S)) (holds (p1, S), holds (p2, S), …holds (pm, S),

~holds (q1, S), ~holds (q2, S), …, ~holds (qn, S),

ab (f, a, S) (holds (p1, S), holds (p2, S), …holds (pm, S),

~holds (q1, S), ~holds (q2, S), …, ~holds (qn, S),

~holds (g, res (a, S)) (holds (p1, S), holds (p2, S), …holds (pm, S),

~holds (q1, S), ~holds (q2, S), …, ~holds (qn, S),

ab (g, a, S) (holds (p1, S), holds (p2, S), …holds (pm, S),

~holds (q1, S), ~holds (q2, S), …, ~holds (qn, S),

O:

holds (f, S0)(.

~holds (g, S0)(.

The rules for inertia:

holds (F, res (A, S)) (holds (F, S), not ab (F, A, S).

~ holds (F, res (A, S)) (~holds (F, S), not ab (F, A, S).

Note: The ab (f, a, S) and the ab (g, a, S) rules have the same head ‘ab’ rather than ‘ab1’ and ‘ab2’ or ‘ab()’ and ‘~ab()’ because they are rules to check for the inertia of the fluents, and would mean the same if used in either of the forms. The rules are to block the inference of the fluent involved by inertia.
Also, we use ~holds (f) instead of holds (~f) because we want the negation to be explicitly specified in the rule, which would make reasoning easier.

An example: The Yale Shooting example

D:

load causes loaded.

shoot causes ~alive.
O:

initially ~loaded.

initially alive.

The Translation
D:

holds (loaded, res(load, S)) (not ab (loaded, load, S).

~holds (alive, res (shoot, S)) (holds (loaded, S) , not ab(alive, shoot, S).

ab (alive, shoot, S) (holds (loaded, S).

ab (loaded, load, S) (.

O:

holds (alive, S0) (.

holds (loaded, S0) (.

The general rules:

holds (F, res (A, S)) (holds (F, S), not ab (F, A, S).

~ holds (F, res (A, S)) (~holds (F, S), not ab (F, A, S).

The above example was in the case where the set of observations were complete i.e., when the observation O had predicates to explain each of the fluents. In case of incomplete observations, the reasoning processes with the above rules do not suffice.

For example, if O did not have any information about loaded, with the above rules, we will be able to infer

holds (alive, res(shoot,S0))

This is because ~holds (alive, res (shoot, S0)) does not fire since of the body of the rule is false. This conclusion is not true.
So, in case of incomplete information, the rules have to be modified in such a way that the states are considered to be abnormal even in the ‘possibility’ of the action firing.

Hence, the rules for inertia are modified as

ab (alive, shoot, S) (not ~holds (loaded, S).

In the general case, the rules would be written as,
ab (f, a, S) (not ~holds (p1, S), not ~holds (p2, S), …not ~holds (pm, S),

not holds (q1, S), not holds (q2, S), …, not holds (qn, S),

Though the above rules would entail a correct reasoning, it is not complete. To illustrate, consider the example
a causes f
if p.
a causes f
if ~p.

initially ~f.

By intuition, this should translate that f is true. But the reasoning with the rules would arrive at the conclusion that f is false. The translation of the example in AnsProlog would be,

holds (f, res(a, S)) (holds (p, S), not ab (f, a, S).
holds (f, res(a, S)) (~holds(p, S), not ab (f, a, S).
ab (f, a, S) (not ~holds (p, S).

ab (f, a, S) (not holds (p, S).

~holds (f, S0) (.

holds (F, res (A, S)) (holds (F, S), not ab (F, A, S).

~ holds (F, res (A, S)) (~holds (F, S), not ab (F, A, S).

Since we don not have any information about p, we would be able to infer both the cases of ab (f, a, S). Hence, our reasoning would be ~ holds (f, res(a, S)).
This is the case where precision is high , and the recall is low. To increase the recall so our reasoning becomes complete and correct would increase the complexity of the planner.

Non-deterministic effect of actions will lead to the notion of multiple models for completeness.

Information

[image: image1.wmf])

(

1

X

XP

NP

P

$

=

=

å

is the notation used for NP problems, where there exits a polynomially checkable function P(X) for any X.

[image: image2.wmf])

,

(

2

Y

X

YP

X

P

"

$

=

å

is a more complex set of problems referred to as sigma 2 P problems.
References

· Lecture notes on 15/10/2003

· Text book – ‘Knowledge Representation, Reasoning and Declarative Problem Solving’ by Dr. Chitta Baral

2
3

_1128283754.unknown

_1128283994.unknown

