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Functional Causal Models – an introduction
The Bayes nets are excellent representations of conditional dependencies. But they do not help much in defining the causal relationships. Consider the case of gene expression analysis using bayes nets. While the conditional dependency can be reasoned from a bayesian network of the genes, it does not clarify if the genes are co-expressed, or if there is a causal relationship between them. The Functional Causal models are a better representation of causality between entities.

The Simpson’s paradox example

	
	Recovery
	~recovery
	#people
	Recovery rate

	Males
	
	
	
	

	Took drug
	18
	12
	30
	60

	~ took drug
	7
	3
	10
	70

	Females
	
	
	
	

	Took drug
	2
	8
	10
	20

	~ took drug
	9
	21
	30
	30

	Total
	
	
	
	

	Took drug
	20
	20
	40
	50

	~ took drug
	16
	24
	40
	40


Consider the example given above. Consider the case where there is a conditional probability representation of the example. This would answer the questions of

P (recovery | took drug, male) 

P (recovery | took drug, female) and

P (recovery | took drug)

The decision of whether to prescribe a drug for a patient gives controversial results as the decision is to prescribe a drug given the sex of a patient (for both male and female), and not to take the drug if not given any information about the drug. This is because the conditional probabilities fail to represent the causality between the recovery and the drug. It represents just the co-occurrence of both. What is needed is a representation that would give


P (recovery | do (drug))

Example 2 


In a group of people, 50 % were given treatment for an ailment and 50% were not. Of the 50 % in both the treated and untreated group, 50 % recovered and 50 % did not. Joe, a patient took the treatment and died. What is the probability that Joe’s death occurred due to treatment? Or, what is the probability that Joe, who died under treatment, would have lived had he not been treated?


The probability distribution table for this example would be

X = 1 ( treatment was given

X = 0 ( treatment was not given

Y = 1 ( patient died

Y = 0 ( patient recovered

	X
	Y
	Probability

	0
	0
	0.25

	0
	1
	0.25

	1
	0
	0.25

	1
	1
	0.25


Causal relationships between treatment and recovery will establish an answer to the claim, whereas the join probability distribution table does not aid.
Functional Causal Models

Functional causal models have the expressibility of the Bayes nets and the causal representations. 
Functional Causal models consist of,

1. Exogenous variables 

2. Endogenous variables

3. Probability distributions on the exogenous variables.

4. Logical functions for each of the endogenous variables that represent the dependence on the other endogenous and exogenous variables.

I.e. vi = f ( u1, u2, u3,…..un,v1,v2,…vi-1,vi+1,…vm)

Where u1, u2...= exogenous variables


     v1, v2...= endogenous variables

In the example of a coin toss,


Endogenous variables = head, tail.


Exogenous variables = spin, air, and other factors that affect the coin toss.

The exogenous variables are beyond the control of the observer, with conditional probabilities set on them.
The example 2 can be represented as a graph below




 u1


 u2





 X


 Y

u1 = a variable that decides treatment

u2 = a variable that determines of someone is dead

P (u1) = 0.5

P (u2) = 0.5

The relationship between u1, u2, X and Y are given.

	U1
	U2
	X
	Y

	0
	0
	0
	0

	0
	0
	0
	1

	1
	0
	1
	0

	1
	1
	1
	1


Given John dies in the treatment => Y=1 and X=1. This follows that the value of u1 =1 and u2=1 from the table.
The question is interpreted as finding P (Y=0 | do (X=0)).
The probability is found out by the following procedure. 

Since we assume that X = 0, we sever the connection between X and u1. The variables in consideration are X and u2 alone for determining Y and the value of u2 has already been established as 1 from the fact given.

Hence, P (Y=0 | do(X=0)) = 0.

Note: Unknown variables (exogenous variables) are independent of each other. 

I.e. P (u1, u2) = P (u1) * P (u2).
The same probability distribution from example 2 can be rewritten as another causal model. The causal relationship is given as
X = u1.

Y = X * u2 + (1 - X) + (1 - u2).

U2 can be a genetic factor which if present, kills people who take this treatment and if absent, kills people who do not take the treatment.

The table for the model

	U1
	U2
	X
	Y

	0
	0
	0
	1

	0
	1
	0
	0

	1
	0
	1
	0

	1
	1
	1
	1





 u1





 X


u2





      Y

The same reasoning can be applied to the model. The fact establishes that X = 1 and Y = 1.
To reason P(Y=0 | do(X=0)), we make X = 0 and sever the connection that X has with u1. Y is calculated as

Y = 0 * 1 + (1 – 0) + (1- 1)

    = 0

Hence the same bayesian network can have many causal models.

Example - Nervous Rifleman

U ( court orders execution

C ( Captain gives signal

A ( Rifleman A shoots

B ( Rifleman B shoots

D ( Prisoner dies

V ( Rifleman A is nervous.

The causal model is given as






  U



V



  C



A





B






D

A = C or V
B = C

D = A or B

C = U

	U
	V
	A
	B
	C
	D

	0
	0
	0
	0
	0
	0

	0
	1
	1
	0
	0
	1

	1
	0
	1
	1
	1
	1

	1
	1
	1
	1
	1
	1


To work out: 


What is the probability that the prisoner would have lived if A were not to have shot (A decides not to shoot).
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