CSE571 ARTIFICL INTELLIGNCE – Fall 2003

5th November 2003 Class Note

Title: PROGOL / Learning AnsProlog – by Luis Tari
What is Progol?
It is a language implementation of “Inductive Logic Programming (ILP)”.

What is ILP?

· Given a logic program B representing background knowledge, a set of positive examples E+, and a set of negative examples E-, find hypothesis H such that
· B UH e for every e (E+.

· B UH f for every f (E-.

· B UH is consistent.

Assume that B e for some e (E+.

Example:

parent_of(charles,george). parent_of(george,diana).

parent_of(bob,harry). parent_of(harry,elizabeth).

grandparent_of(charles,diana).

grandparent_of(bob,elizabeth).

grandparent_of(X,Y) :- parent_of(X,Z), parent_of(Z,Y).

Basic idea is, run a “rule” from examples (Horn clauses).

Progol is developed by Stephen Muggleton et.al. and it is one of the most popular rule-learning systems for classification and prediction.
Syntax:

To declare the kind of rule we would like to lean… For examples,

:- modeh(1, p(+type,+type))?

:- modeb(1, q(+type,-type))?

:- modeb(1, r(+type,+type))?

That means we want to learn a rule that has predicate p as the head, and predicates q and r are possible candidates for the body of the rule.

“modeh" – to define the head of the hypothesis while “modeb” is to define the literals that should appear in the body of the hypothesis.

The first number (in the example is 1) is called “recall.” It shows how many number of solutions you need. You can specify * as “no limit.”
“+” and “-“ are used to impose an ordering of predicates in the rule to be learned. (and you can specify “#” as a constant).

More Examples:

%% Mode declaration

:- modeh(1,p(+v,+v))?
:- modeb(1,q(+v,-v))?
:- modeb(1,r(+v,+v))?
%% Background knowledge
v(a). v(b). v(c).
v(d). v(e). v(f).
v(g). v(h). v(i).
%% Positive examples
p(a,d). q(a,g). r(g,d).
p(b,e). q(b,h). r(h,e).
p(c,f). q(c,i). r(i,f).

%% Negative examples

:- p(a,g).
:- p(g,d).
:- p(a,e).
:- p(b,f).

Basic algorithm:
1. From a positive example, construct the most specific clause (.

2. Based on (, find a generalized form s of (so that s has the highest value of fs among all the candidates.

3. Remove all positive examples that are covered by s.

4. Goto 1 if there are still positive examples that are not yet covered.

More example and execution output.

:- modeh(1,p(+v,+v))?

:- modeb(*,q(+v,-v))?

:- modeb(1,r(+v,+v))?

v(a). v(b). v(c). v(d). v(e).

v(f). v(g). v(h). v(i).

p(a,d). q(a,g). r(g,d).
p(b,e). q(b,h). r(h,e).

p(c,f). q(c,i). r(i,f).

CProgol Version 4.2.1 for Win32

[:- modeh(1,p(+v,+v))? - Time taken 0.00s]

[:- modeb(100,q(+v,-v))? - Time taken 0.00s]

[:- modeb(1,r(+v,+v))? - Time taken 0.00s]

 [Generalising p(a,d).]
[Most specific clause is]

p(A,B) :- q(A,C), r(C,B).

[C:1,3,2,0 p(A,B).]
[C:1,3,1,0 p(A,B) :- q(A,C).]

[C:1,3,0,0 p(A,B) :- q(A,C), r(C,B).]

[4 explored search nodes]

f=1,p=3,n=0,h=0

[Result of search is]

p(A,B) :- q(A,C), r(C,B).

[3 redundant clauses retracted]

p(A,B) :- q(A,C), r(C,B).

[Total number of clauses = 1]

[Time taken 0.000s]
Learning AnsProlog Rules

Drawbacks of Progol was:

- Cannot learn rules with classical negation, or negation as failure.

- Cannot learn from programs with multiple models.

How to solve the problem?

Learning from Positive Examples

B = { bird(X) :- penguin(X).

 bird(tweety).

 penguin(polly). }

E = { flies(tweety).}

1. Let the current example posEx = {flies(tweety).}.

2. Lit = {penguin(tweety), penguin(polly), bird(tweety), bird(polly), flies(tweety), flies(polly)}.

3. S = {penguin(polly), bird(tweety), bird(polly)}.

4. S+ = {penguin(polly), bird(tweety), bird(polly), not penguin(tweety), not flies(tweety), not flies(polly)}.

5. Rel = {not flies(tweety), bird(tweety), not penguin(tweety)}.

6. ((= (not flies(tweety), bird(tweety), not penguin(tweety).

7. R = flies(tweety) (bird(tweety), not penguin(tweety).

8. (= A / tweety. SH = flies(A) (bird(A), not penguin(A).

Class hour is ended at this point. (Rest of topic is “Learning from Negative example” and “Learning Enumeration Rules.”
B

E+

H

