CSE 571 Scribe Notes for 8/27/03

Karen Chancellor and Luis Tari


· Examples of procedural languages are Pascal, C and Fortran. In these, one must specify the steps to take to solve a problem. A different approach is to just define what the problem is and let the computer figure out how to solve it. This technique is called declarative programming.

In the case of sorting an array of numbers a in ascending order, we need to specify how sorting is done by putting loops and moving the elements of the array in procedural languages. For declarative languages, we only need to define rules such that a[i] <= a[i+1].

· Initially, classical logic is thought to be the right declarative language. It is realized that classical logic is monotonic and prohibits from representing knowledge such as normally.

· For instance, classical logic allows us to represent “all birds have wings” as follows:

(X (bird(X) ( has_wing(X))

· But how to represent the following information?


Normally birds fly.


Tweety is a bird.


All penguins are birds.


All penguins do not fly?

· To resolve the problem of monotonicity in classical logic, a subset of classical logic called Horn logic is used. Horn clauses are defined as only having at most one positive literal among a disjunction of literals, i.e.

(b1 ( (b2 ( … ( (bn ( a

By using the property that (b ( a is equivalent to a ( b, Horn logic is a collection of rules of the form:

a ( b1, b2, …, bn.

Commas are used in the place of (.

· Prolog is a language that is based on this subset of classical logic. Prolog (5th generation computing) uses horn logic. Because it was not powerful enough, extensions were added to the language. AnsProlog gets rid of the non-declarative features of Prolog.

· With the notion of negation as failure, we can capture the idea of normally as follows:

Normally birds fly. Tweety is a bird. All penguins are birds, but they do not fly. 

fly(X) ( bird(X), not ab(X).

bird(tweety) ( .

bird(X) ( penguin(X).

ab(X) ( penguin(X).

Now to answer the query ?fly(tweety), we have a problem because ‘not’ is not used in classical logic. We cannot show that tweety is abnormal. The only way to conclude ‘fly(tweety)’ is to show ‘not ab(tweety)’.

Databases use the CWA (closed world assumption): if we can’t prove something, we can assume it to be false. But what if we just don’t know?

Now add “tweety is a penguin” to the above program. Then from ‘penguin(tweety)’, we can conclude ‘fly(tweety)’ is false. This demonstrates non-monoticity: when new information is added, what can be logically concluded changes. This is important in real world situations.

· What happens when an eraser is picked up? We might represent this as (X(occurs(pickup(X), t) -> holds(in_hand(X), t+1).

But has the chalkboard been cleaned after the eraser is picked up? Normally, all that happens after the eraser has been picked up is what is depicted in the above statement. There are an infinite number of things which haven’t happened after the eraser has been picked up. This is an example of the ‘frame problem’ (1959).

· The ancestor problem is a perfect example to illustrate that classical logic and even relational databases are not adequate to represent knowledge.

ancestor(X,Y) ( parent(X,Y).

ancestor(X,Y) ( parent(X,Z), ancestor(Z,Y).

Ordering of literals matter in Prolog. Prolog can get stuck into loops if the above rule is ancestor(X,Y) ( ancestor(Z,Y), parent(X,Z). The way that Prolog deals with negation as failure can also result Prolog to be stuck in infinite loops. The following is an example to illustrate this:

a ( not b.

b ( not a.

· In order to overcome some of these disadvantages, the language AnsProlog* that is based on the answer set semantics was developed. AnsProlog* is a popular language for knowledge representation due to the fact that there are efficient implementations of it and found to be as expressive as some of the other nonmonotonic languages, while syntactically less intimidating. A large body of support structure has already been established to develop the language.

· AnsProlog* syntax:

AnsProlog* program is a collection of rules of the following form:

L0 or … or Lk ( Lk+1, …, Lm, not Lm+1, …, not Ln.

where each of the Lis is a literal. The above rule means that if Lk+1, …, Lm are true and if Lm+1, …, Ln can assumed to be false, then at least one of L0, …, Lk must be true.

Predicates: fly, bird, penguin, ancestor, parent

Function symbols: s(0)=1, s((0))=2, examples of the ‘successor’ function

Constants: tweety

Variables: X, Y

Connectives: and, or, <-, not, (
Punctuation marks: . , ( )

If p is a predicate of arity n, and t1, t2, ….., tn are terms, then p(t1, …., tn) is an atom. For example ‘penguin(X)’ is an atom.

( p(t1, …., tn) is a negative literal.
Not p(t1,….,tn) is a naf-literal (negation as failure).

Variables and constants are considered as terms. A function of terms is also a term. A ground term is a term that contains no variable in it. Terms can be seen as the objects in the world. 

An atom is composed of a predicate symbol of terms. A ground atom is an atom that contains no variable in it. Atoms can be seen as properties of the world.

Herbrand Universe (HU) is the set of all ground terms that can be formed with the functions and constants in the language. It can be seen as all the objects that can be constructed in the universe.

Herbrand Base (HB) is the set of all ground atoms that can be formed with predicates and terms from the Herbrand Universe. It can be seen as all possible properties in the universe.

For example,


p(a).

p(f(X)) ( p(X).

q(b).

p and q are predicate symbols. f is a function symbol. a and b are both constants while X is a variable.

HU = {a, f(a), f(f(a)), …, b, f(b), f(f(b)), …}

HB = {p(a), p(f(a)), p(f(f(a))), …, p(b), p(f(b)), p(f(f(b))), … q(a), q(f(a)), q(f(f(a))), …, q(b), q(f(b)), q(f(f(b))), …}

· ( means inconsistent or FALSE. For example the statement ‘( <- b’ means that if b is true, then that is a wrong (inconsistent) world view.

(








