Notes from Class on Sept. 15, 2003

Thomas Styles

Suppose we have the program:


a ( not b.


b ( not c.

The program is not stratified, but we use splitting to get the answer set {b}.  {b} and {c, a} are minimal models.  {a, b, c} is a model but not minimal.

Proposition 20 (Chapter 3):

1.  For any rule in the program, if the body is true by virtue of a specific answer set, then the head must be in the answer set.

2.  For any ai in an answer set, there exists a rule with ai in the head and with the body being true by virtue of the answer set.

A program is stratified if the predicate dependency graph does not have a cycle with a “not” edge.
A program is locally stratified if the atom dependency graph does not have a cycle with a “not” edge.

Suppose we have the program:


p ( not p.


p ( a.


-----------

a ( not b.


b ( not a.

The program is not stratified, but we use splitting to get the answer set.  The splitting set is {a, b}.

The lower program has answer sets {a} and {b}.

Taking the {a} answer set, the upper program then obtains {p}, so that an answer set of the whole program is {a, p}.

Taking the {b} answer set of the lower program, the upper program is then inconsistent and has no answer set.
Thus, the whole program has only the one answer set {a, p}.

A program can use the following rule in order to ensure that “cond” is false.

p ( not p, cond.

But in this case we must take care that p does not appear elsewhere in the program.

We can split a program into more than two layers.  For example, suppose we have the following non-stratified program.

a ( not b.
b ( not a, c.

------------------

c ( not d.

d ( not c, not e.

------------------

e ( not f.

f ( not e.

We obtain the bottom program answer sets, then for each of these obtain middle program answer sets.  Then for each answer set of the combined bottom and middle programs, we obtain the upper program answer sets.
{f}


{c, f}



{c, f, a}



{c, f, b}


{d, f}



{d, f, a}

{e}


{c, e}



{c, e, a}



{c, e, b}

The answer sets of the whole program are 

{c, f, a}, {c, f, b}, {d, f, a}, {c, e, a}, and {c, e, b}.

Suppose p(x) means x is possible and c(x) means x is chosen.  Suppose we have p(a), p(b) and p(c) and we want to enumerate choices to obtain the following answer sets.
A0 = {}

A1 = {c(a), p(a),…} 
A2 = {c(b), p(a),…}

A3 = {c(c), p(a),…}

A4 = {c(a), c(b), p(a),…}

A5 = {c(a), c(c), p(a),…}

A6 = {c(b), c(c), p(a),…}

A7 = {c(a), c(b), c(c), p(a),…}
We do that with the program:


c(x) ( p(x), not n_c(x).


n_c(x) ( p(x), not c(x).


p(a).


p(b).


p(c).

We can eliminate A0 by adding rules:

some ( p(x), c(x).


( not some.

We can eliminate multiple choices by adding 


( c(x), c(y), neq(x, y).

The above program, including the added rules, expresses enumeration with exactly one item chosen.  Alternatively, we can express the same thing in the following smaller program.

other_chosen(x) ( p(y), c(y), neq(y, x).
c(x) ( p(x), not other_chosen(x).

p(a).

p(b).
p(c).

We can formulate the Nqueens problem using an other_chosen predicate similar to the above.  Alternatively, we can start with the following and add rules.


q(x, y) ( not n_q(x,y).


n_q(x, y) ( not q(x,y).

We have now shown how to enumerate subsets of a set of things.  We have also shown how to enumerate answer sets with exactly one from the set of things.  This is declarative problem solving.  Besides declarative problem solving, we will later show other uses of AnsProlog.
Suppose p is true iff there exists a block on the table.
q is true iff all blocks on the table are blue.

Let ontable(x) mean x is a block on the table.

Let blue(x) mean x is blue.

Express this problem as follows.

p ( ontable(x).

n_q ( ontable(x), not blue(x).

q ( not n_q.
