Our problem from the previous class was to try to write an implementation in AnsProlog for the following rule: Refuse admission to an applicant if he/she has not taken any (at least one) honors class.

We were given the following predicates to use:

\[
\text{refuse_admission}(X) \\
\text{applicant}(X) \\
\text{taken_honor_class}(X, Y)
\]

One idea suggested in class was the rule:

\[
\text{refuse_admission}(X) \leftarrow \\
\text{applicant}(X), \textbf{not} \text{ taken_honor_class}(X, Y).
\]

However, this rule fails in the following instance:

\[
\text{applicant}(\text{john}). \\
\text{applicant}(\text{george}). \\
\text{taken_honor_class}(\text{john}, \text{chemistry}). \\
\text{taken_honor_class}(\text{george}, \text{physics}).
\]
The resulting Herbrand Base is:

\[
\text{refuse}(\text{john}) \leftarrow \text{applicant}(\text{john}), \textbf{not} \ \text{taken_honor_class}(\text{john}, \text{chemistry}).
\]

\[
\text{refuse}(\text{john}) \leftarrow \text{applicant}(\text{john}), \textbf{not} \ \text{taken_honor_class}(\text{john}, \text{physics}).
\]

\[
\text{refuse}(\text{george}) \leftarrow \text{applicant}(\text{george}), \textbf{not} \ \text{taken_honor_class}(\text{george}, \text{chemistry}).
\]

\[
\text{refuse}(\text{george}) \leftarrow \text{applicant}(\text{george}), \textbf{not} \ \text{taken_honor_class}(\text{george}, \text{physics}).
\]

In the two applications of the middle two rules, the applicant will be rejected because there exists an honors class which that individual did not take. This answer would have been correct if the problem was to reject an applicant who had not taken ALL honors classes.

When using variables with nots we have to be careful. If there exists a Y such that the condition is not true, the rule will be applied.
For example, in the rules

\[\text{parent}(X) \leftarrow f(Y, X). \]
\[\text{parent}(X) \leftarrow m(Y, X). \]

if there exists a \(Y \), then \(X \) is a parent. \(X \) is a parent if there exists a \(Y \) such that \(X \) is a \(f \) of \(Y \) or \(X \) is a \(m \) of \(Y \). Any variable that doesn’t appear in the head acts as a ”there exists.”

The correct answer to the problem is:

\[\text{taken_an_honor_class}(X) \leftarrow \text{taken_honor_class}(X, Y). \]
\[\text{refuse_admission}(X) \leftarrow \text{applicant}(X), \textbf{not} \ \text{taken_an_honor_class}(X). \]

The lesson here is, if a variable appears only after a \textbf{not}, and nowhere else, it means ”there exists.”
As a technical sidenote, in smodels we would need a domain specifier for the classes – i.e. we would need to say `class(chemistry)` and `class(physics)`, and that predicate would need to be present in every rule that referenced a class.

This concept regarding variables and ”there exists” is important for the current homework assignment. Any variable that appears only in the body of a rule acts as a ”there exists.”
Birds normally fly.

\[\text{fly}(X) \leftarrow \text{bird}(X), \text{not } \text{ab}(X). \]
\[\text{bird(tweety)}. \]
\[\text{ab}(X) \leftarrow \text{penguin}(X). \]
\[\text{bird}(X) \leftarrow \text{penguin}(X). \]

If we want to say that tweety doesn’t fly, we can say

\[\text{ab(tweety)}. \]

We should be able to say

\[\neg \text{fly(tweety)}. \]

The point is, this notation is useful in writing programs, but it can always be eliminated.

We could also say

\[n_{-}\text{fly(tweety)}. \]
Another use for the \neg notation is in the following example

Cross the track if no train is coming.

However, the rule

$$cross \leftarrow \textbf{not train}.$$

is dangerous because it means to cross if we cannot prove that a train is coming. We want to say

Do not cross the track unless we KNOW that no train is coming.

We can say

$$cross \leftarrow \neg \text{train}.$$

to mean that we cross if we are sure there is no train.
Closed World Assumption

In the following example:

\[\text{anc}(X, Y) \leftarrow \text{par}(X, Y). \]
\[\text{anc}(X, Y) \leftarrow \text{par}(X, Z), \text{anc}(Z, Y). \]

\[\text{par}(a, b). \]
\[\text{par}(b, c). \]
\[\text{par}(d, e). \]

this is ”closed world assumption.” Everything we know about parents is here.

But suppose we found old DNA samples, so complete information is not available. Suppose we only know

\[\text{par}(a, b). \]
\[\neg \text{par}(b, c). \]
\[\neg \text{par}(a, d). \]

this is an open world assumption where some things are known and some are unknown. We can still use the ancestor rules from above, but we need rules for ”not ancestor.”
We could say

$$\neg \text{anc}(X, Y) \leftarrow \text{not} \ \text{anc}(X, Y).$$

then from the above rules, we could conclude

$$\neg \text{anc}(a, c).$$

But we want to be certain that someone is not another’s ancestor before we affirmatively make such a conclusion.

$$\neg \text{anc}(X, Y) \leftarrow \text{anc}(Y, X).$$

works for a small subset of instances. We want something that will work for all cases.

$$\neg \text{anc}(X, Y) \leftarrow \neg \text{par}(X, Z), \text{anc}(Z, Y).$$

was another suggestion. But this won’t work either.
\[\neg \text{anc}(X, Y) \leftarrow \text{not has-par}(X). \]
\[\text{has-par}(Y) \leftarrow \text{par}(Y, X). \]

would only work for only a small set of cases.

The solution to this problem is left as an exercise for the next class. Students are asked not to look in the book for the solution to it.
There are two kinds of AnsProlog\(^{-}\) – AnsProlog\(^{-}\) and AnsProlog\(^{-}\),\(-\text{not}\).

AnsProlog\(^{-}\) rules are of the form

\[L_0 \leftarrow L_1, \ldots, L_m, \text{not}L_{m+1}, \ldots, \text{not}L_n. \]

AnsProlog\(^{-}\),\(-\text{not}\) rules are of the form

\[L_0 \leftarrow L_1, \ldots, L_m. \]

where the \(L_i\)'s are literals, e.g. \(p\) or \(\neg p\). These can be done in the same manner as AnsProlog\(^{-}\),\(-\text{not}\) programs:

- minimal set of literals which is \textit{closed} under the rules. (It was atoms instead of literals in the previous case.)
- except that if this set has \(\neg p\) and \(p\) then \textit{lit} is the answer set.
example:

$$\neg a \leftarrow b.$$
$b \leftarrow$.
$a \leftarrow$.

gives as its answer set \(\text{lit} = \{a, b, \neg a, \neg b\} \). \text{Lit} means that all other possible literals get added (in this case, \(\neg b \)). The answer set consists of everything. This is not a consistent program.

For AnsProlog\(^\sim\) programs, we do the same as before. Apply transformations to remove not from the rules.
An Example

The program π is:

$$\neg a \leftarrow b.$$
$$b \leftarrow .$$

The answer set is $S = \{-a, b\}$.

For the program π^+

$$n_a \leftarrow b.$$
$$b \leftarrow .$$

the answer set is $S^+ = \{b, n_a\}$.

*If S is a **consistent** set of literals, then S is an answer set of π iff S^+ is an answer set of π^+.***

In other words n_- can replace \neg, but only if the answer set is **consistent**.
Consider the program

\[a \leftarrow b. \]
\[¬a \leftarrow . \]
\[b \leftarrow . \]

The answer set for the above program is \(\text{lit} = \{b, ¬a, ¬b\} \).
(There is currently a debate in the community that this is not an answer set – that there is no answer set at all for this program.)

Contrast this with the program

\[a \leftarrow b. \]
\[n_a \leftarrow . \]
\[b \leftarrow . \]

whose answer set is \(\{b, n_a, a\} \).

The main point of this discussion is that \textbf{not} is false by default – we can’t prove it true. But \(¬ \) means that we \textit{know} it’s not true.
The program

\[
\neg a \leftarrow b. \\
\neg b \leftarrow .
\]

has answer set \{\neg b, \neg a\}. Whereas the program

\[
b \leftarrow a. \\
\neg b \leftarrow .
\]

has answer set \{\neg b\}.

However, these two programs are equivalent in propositional logic. The first program translates to

\[
\neg b \Rightarrow \neg a \equiv (b \lor \neg a)
\]

and the second program translates to

\[
a \Rightarrow b \equiv (\neg a \lor b).
\]

In the case of the second program, \(a\) is *unknown* with respect to the answer set.

It is important to know that you don’t know something. This allows us to say that we don’t know the answer.
An Example

eligible(X) ← highGPA(X).
eligible(X) ← special(X), fairGPA(X).
¬eligible(X) ← ¬special(X), ¬highGPA(X).
interview(X) ← not eligible(X), not ¬eligible(X).

fairGPA(john).
¬highGPA(john).

From these rules, we cannot determine if john is eligible or not. So we recommend that he be interviewed.