CSE571                                      Class Notes for Sept. 17                                     Geoff Beerbower


Problem: Refuse admission to an applicant if he/she has not taken any honors course.

refuse_admission(X).

applicant(X).

taken_honors_course(X,Y).

refuse_admission(X) ← applicant(X), not taken_honors_course(X,Y).

applicant (john).

applicant (george).

taken_honors_course(john, chemistry).

taken_honors_course(george, physics).

Side Note: If we go by mathematical semantics, variables can go anywhere, so there would be many instantiations.  However, in “smodels” there is implicit typing.  So in this example, chemistry and physics can only appear in the Y position in the “taken_honors_course(X,Y).” rule.

The above rules lead to the following instantiations:

1) refuse_admission(john) ← applicant(john), not taken_honors_course(john, physics).

2) refuse_admission(john) ← applicant(john), not taken_honors_course(john, chemistry).

3) refuse_admission(george) ← applicant(george), not taken_honors_course(george, physics).

4) refuse_admission(george) ← applicant(george), not taken_honors_course(george, chemistry).

Remember, the head of a rule is true if there is some combination of variables that make the body true.  Here, instantiation 2 causes john to be refused, even though he has taken an honors course.  Likewise, instantiation 4 causes george to be refused.  The point is:

When using variables and not, be very careful what not means.

Solution: replace the first rule:

refuse_admission(X) ← applicant(X), not taken_honors_course(X,Y).

with the following two rules:

taken_honors_course(X)← taken_honors_course(X,Y).

refuse_admission(X) ← applicant(X), not taken_honors_course(X).

Side Note: If the original problem had been “Refuse admission to an applicant if he/she has not taken all honors courses”, then the original solution would have been correct.

AnsProlog ¬
Note: The ¬ symbol is useful for writing programs.  However, it is not needed.  The program can always be written some other way.

Consider:

fly(X) ← bird(X), not abnormal(X).

abnormal(X) ← penguin(X).

bird(X) ← penguin(X).

bird(tweety).

tweety is a bird.  Since we cannot prove that he is abnormal, it follows that tweety flies.  However, suppose we observe that he does not fly.  How can we represent this?

We could add:

abnormal(tweety).

or 

← fly(tweety).
Unfortunately, this will eliminate models where tweety can fly.  One solution would be to write the first rule of the program with the following two rules:

fly(X) ← bird(X), ¬fly(X).

¬fly(X) ← abnormal(X).

Then if we observe that tweety does not fly, we can simply add the fact:

¬fly(tweety).
* * *

Problem: Cross the tracks if no train is coming.

Solution using default negation:

cross ← not train(X).

This solution is dangerous, since it will lead to crossing the tracks if nothing is known about the train.  If we instead use explicit negation, then we only cross if we know that there is no train:

cross ← ¬  train(X).

* * *

Note: With closed world assumptions, if something cannot be proven then it is considered false. With open world assumptions, if something cannot be proven then we simply do not know its truth value.

Consider the following program:

ancestor(X, Y) ← parent(X, Y).

ancestor(X, Y) ← parent(X, Y), ancestor(Z, Y).

parent(a, b).

parent(b, c).

parent(d, e).

We’ve defined what an ancestor is.  Under closed world assumptions, any individual (a, b, c, d, or e) that is not shown to be an ancestor of one of the other individuals is by default not an ancestor of that individual.  Remember, either something is provably true or it is assumed false.  However, under open world assumptions, this is not the case.  The lack of proof that individual X is not individual Y’s ancestor does not mean that individual X is not individual Y’s ancestor.  It simply means that we don’t know.  Now suppose we happen to know that individual X is, in fact, not individual Y’s ancestor.  How can this be represented using open world assumptions?

Assigned as take home exercise.

* * *

AnsProlog ¬, -not
L0 ← Lk+1, …, Lm
where Li’s are literals

The meaning of this program is the minimal set of literals which is closed under the rules (In this case, closed means that if you have “← Lk+1, …, Lm” then you have to have “L0”).  The exception to this rule is that if the set contains both ¬p and p, then it is inconsistent. In that case, Lit (all of the literals) is the answer set.

Rule: If S is a consistent set of literals, then S is an answer set of ∏ iff S+ is an answer set of       ∏+.

Consider the program ∏:

¬a ← b.

b ←.

a ←.
We derive the set S: {¬a, b}, which is not inconsistent.

Now consider the program ∏+:

n_a ← b.

b ←.

The answer S+ is {n_a, b}.

Since S maps to S+, S is an answer set of ∏.

* * *

Consider the program ∏:

a ← b.

¬a.

b.

We derive the set S: {a,¬a, b}, which is inconsistent.  Therefore the answer set for ∏ is Lit {a,¬a, b, ¬b}.

Notice that the answer set for ∏+:

a ← b.
n_a.

b.

is S+: {a, n_a, b}, which does not map to S.

* * *

Note: The following two programs are equivalent in terms of propositional logic, but they have different answer sets.

	∏1
	∏2

	¬a ← ¬b.      (equivalent to: b v ¬a)

b.
	b ← a.      (equivalent to: ¬a v b)

b.



	Answer set: {¬b, ¬a}
	Answer set: {¬b }


* * *

Consider the following program.

eligible(X) ← highGPA(X). 

eligible(X) ← special(X), fairGPA(X). 

¬eligible(X) ← ¬special(X), ¬highGPA(X).

interview(X) ← not eligible(X), not ¬eligible(X).

fairGPA(john).

¬highGPA(john).

Will this program grant john an interview?

Assigned as take home exercise.

* * *

END OF CLASS

