Proof sketch of R3

- R3: Deciding if \((D, O)\) is consistent is NP-complete.
- Deciding if \((D, O)\) is consistent is in NP.
 - From R1 deciding whether \(\Phi_D\) exists is polynomial.
 - Guess an initial state \(\sigma_0\).
 - From R2, verifying if \(\sigma_0\) is an initial state with respect to \((D, O)\) can be done in polynomial time.
- We reduce the known NP complete problem 3SAT to R3.
 - I.e., given a 3SAT formula \(F\) we will construct (in polynomial time) a pair of \(D\) and \(O\) such that \(F\) is satisfiable iff \((D, O)\) is consistent.
 - Let \(F\) be of the form \(\left(f_{11} \lor f_{12} \lor f_{13} \right) \land \ldots \land \left(f_{n1} \lor f_{n2} \lor f_{n3} \right)\).
 - \(D\) consists of the following.
 * a \texttt{causes} \(g_1\) if \(f_{11}\); a \texttt{causes} \(g_1\) if \(f_{12}\); a \texttt{causes} \(g_1\) if \(f_{13}\)
 :
 * a \texttt{causes} \(g_n\) if \(f_{n1}\); a \texttt{causes} \(g_n\) if \(f_{n2}\); a \texttt{causes} \(g_n\) if \(f_{n3}\)
Handout 1.

Representing and reasoning about actions and their impact

- a' causes g if g_1, \ldots, g_n.

- O consists of the following.
 - * initially $\neg g_1, \ldots, \neg g_n, \neg g$.
 - * g after a, a'.

- Argue that if F is satisfiable then (D, O) is consistent.
- Argue that if (D, O) is consistent then F is satisfiable.
Proof sketch of R4

- R4: Deciding if $(D, O) \models f \text{ after } a_1, \ldots, a_n$ is coNP complete.

- Lemma: $(D, O) \models f \text{ after } a_1, \ldots, a_n$ iff $(D, O \cup \{ \neg f \text{ after } a_1, \ldots, a_n \})$ is inconsistent.
 i.e., not $(D, O) \models f \text{ after } a_1, \ldots, a_n$ iff $(D, O \cup \{ \neg f \text{ after } a_1, \ldots, a_n \})$ is consistent.

- So the converse of R4 is an NP complete problem.

- Therefore R4 is coNP complete.
Proof sketch of R5

• R5: Given a \(D \), a complete set of observations about the initial state \(O \), and a fluent \(g \), finding a polynomial sequence of actions \(a_1, \ldots, a_m \) such that \((D, O) \models g \text{ after } a_1, \ldots, a_m \) is NP-complete. (i.e., Feasible planning in \(A_0 \) with a complete initial state, and simple goal, is NP-complete.)

• R5 is in NP.
 - Given \(D, O \) and \(g \), guess a sequence of actions \(a_1, \ldots, a_m \).
 - Let \(\sigma_0 = \{ f : f \text{ is a fluent and initially } f \text{ is in } O \} \).
 - Check if \(g \) holds in \(\Phi_D(a_m, \Phi_D(a_{m-1}, \ldots \Phi_D(a_1, \sigma_0) \ldots)) \).

• We now reduce 3SAT to R5.
 - Let \(F \) be of the form \((f_{11} \lor f_{12} \lor f_{13}) \land \ldots \land (f_{n1} \lor f_{n2} \lor f_{n3}) \).
 - \(D \) consists of the following.
Let \(g_1, \ldots, g_m, g \) be new propositions not in the language of \(F \).

\[a \text{ causes } g_1 \text{ if } f_{11}; \quad a \text{ causes } g_1 \text{ if } f_{12}; \quad a \text{ causes } g_1 \text{ if } f_{13} \]
\[: \]
\[a \text{ causes } g_n \text{ if } f_{n1}; \quad a \text{ causes } g_n \text{ if } f_{n2}; \quad a \text{ causes } g_n \text{ if } f_{n3} \]
\[a' \text{ causes } g \text{ if } g_1, \ldots, g_n. \]

For all propositions \(p \) in the language of \(F \) we have an action \(a_p \) and the effect proposition \(a_p \text{ causes } p \).

- \(O \) consists of the following.
 - For all propositions \(p \) in the language of \(F \) we have \textit{initially} \(\neg p \)
 - \textit{initially} \(\neg g_1, \ldots, \neg g_n, \neg g \).

- Goal is \(g \).

- Argue that if \(F \) is satisfiable then there is a polynomial length plan for \(g \) with respect to \((D, O)\).

- Argue that if there is a polynomial length plan for \(g \) with respect to \((D, O)\) then \(F \) is satisfiable.