Hypothetical reasoning in initial state complete \mathcal{A}_0: tr_do_1 and tr_q_1

1. For a fluent f suppose the domain description D contains only the following effect axioms that either make f true or make it $false$.

- a_1 causes f if p_{l1}, \ldots, p_{lr_l}
- b_1 causes $¬f$ if q_{l1}, \ldots, q_{ls_l}

For an integer n, formulas obtained by instantiating N below with $1...n$ are in $tr_do_1(D, O, n)$.

$$f[N + 1] \iff (a_1[N] \land p_{l1}[N] \land \ldots \land p_{lr_l}[N]) \lor \ldots \lor (a_l[N] \land p_{l1}[N] \land \ldots \land p_{lr_l}[N]) \lor (f[N] \land (¬b_1[N] \lor q_{l1}[N] \lor \ldots \lor q_{ls_l}[N])) \land \ldots \land (¬b_m[N] \lor q_{m1}[N] \lor \ldots \lor q_{ms_m}[N])$$

2. for each initially f in O the proposition $f[1]$ is in $tr_do_1(D, O, n)$.

3. A query Q given by f after a_1, \ldots, a_t is translated to:

$$(a_1[1] \land ¬a_2[1] \ldots \land ¬a_r[1]) \land \ldots \land (¬a_1[t] \land \ldots \land ¬a_{t−1}[t] \land a_t[t] \land ¬a_{t+1}[t] \ldots \land ¬a_r[t])$$

where a_1, \ldots, a_r are all the actions in D. We will refer to the above as $tr_q_1(Q)$.
4. Proposition 1: Given a consistent domain description D, a complete set of initial state observations O and a query Q of the form f after a_1, \ldots, a_t, $(D, O) \models Q$ iff $\text{tr}_\text{do}_1(D, O, t) \cup \text{tr}_\text{q}_1(Q) \models f[t + 1]$.

5. Lemma 1: For a consistent domain description D and a complete set of initial state observations O, (D, O) has a unique model.

6. Lemma 2: Given a consistent domain description D, a complete set of initial state observations O and a query Q of the form f after a_1, \ldots, a_t, let $M = (\sigma_0, \Phi)$ be a unique model of (D, O).

The propositional theory $\text{tr}_\text{do}_1(D, O, t) \cup \text{tr}_\text{q}_1(Q)$ has a unique model M given by

$$\{f[k + 1] : f \in [a_1, \ldots, a_k]\sigma_0, 0 \leq k \leq t\} \cup \{a[i] : 1 \leq i \leq t\}.$$

Proof-sketch (by induction on t)

Inductive step: $f \in [a_1, \ldots, a_k]\sigma_0$ if

(i) $f \in E_D^+(a_k, [a_1, \ldots, a_{k-1}]\sigma_0)$ or

(ii) $f \in [a_1, \ldots, a_{k-1}]\sigma_0$ and $f \notin E_D^-(a_k, [a_1, \ldots, a_{k-1}]\sigma_0)$.

(i) Let $f \in E_D^+(a_k, [a_1, \ldots, a_{k-1}]\sigma_0)$. This means there must exist an effect propositions of the form a causes f if p_1, \ldots, p_n such that p_1, \ldots, p_n hold in $[a_1, \ldots, a_{k-1}]\sigma_0$. By the induction hypothesis if p_i is a positive fluent literal then $p_i[k]$ must be true in M and otherwise $p_i[k]$ must be false in M. Thus to satisfy the
formula in \(tr_do_1(D, O, t) \), \(f[k + 1] \) must be true in \(M \).

7. A linear regression algorithm: Start from \(f[t + 1] \), use \(tr_do_1(D, O, t) \) to obtain what should be true at \(t \). Use \(tr_q_1(Q) \) to use the information about what action occurs at \(t \) and simplify the regressed formula. Pursue each branch of the simplified regressed formula as above until the initial state.
Hypothetical reasoning in initial state complete A_0: \(tr_do_2 \) and \(tr_q_2 \)

- Given D, O and n as mentioned in the previous slide, \(tr_do_2(D, O, n) \) consists of the formulas in \(tr_do_1(D, O, n) \) and the following:

 - For all $1 \leq i \leq t$, $a_1[i] \lor \ldots \lor a_r[i]$ is in $\text{tr}_\text{do}_2(D, O, n)$.

 - For all $1 \leq i \leq t$ and $1 \leq j, k \leq r$ where $j \neq k$, $- (a_j[i] \land a_k[i])$ is in $\text{tr}_\text{do}_2(D, O, n)$.

- A query Q given by f after a_1, \ldots, a_t is translated to:

 $a_1[1] \land \ldots \land a_t[t]$

 which we will refer to as $\text{tr}_\text{q}_2(Q)$.

- Proposition 2: Given a consistent domain description D, a complete set of initial state observations O and a query Q of the form f after a_1, \ldots, a_t, $(D, O) \models Q$ iff $\text{tr}_\text{do}_2(D, O, t) \cup \text{tr}_\text{q}_2(Q) \models f[t + 1]$.
1. Proposition 3: Let D be a consistent domain description, O be a complete set of observations about the initial state, and g be the goal. A sequence of actions a_1, \ldots, a_t is a plan iff there is a model of $tr_{do_2}(D, O, t) \cup g[t + 1]$ containing $\{a_1[1], \ldots, a_t[t]\}$ as the only action occurrences.

2. The above suggests that to find a plan, if we know that a plan of length t exists then we should give a propositional solver the propositional theory $tr_{do_2}(D, O, t) \cup tr_{q_2}(Q) \cup g[t + 1]$ and ask it to find a model. Each model (if exists) will encode a plan.

If we do not know the plan length but have an idea of an upper bound, then

- we can have a dummy action which does not affect the world; or
- we can replace $g[t + 1]$ by $g[1] \lor \ldots \lor g[t + 1]$.
Some good SAT solvers

