DELIBERATIVE ARCHITECTURE: ACCOUNTING FOR OBSERVATIONS
Recap

- Domain description: Define a transition function Φ from actions and states to sets of states.
 - Effect of actions: a \textit{causes} f if p_1, \ldots, p_m
 - Causality: p_1, \ldots, p_n \textit{causes} f
 - Executability conditions: executable a if q_1, \ldots, q_r.
 - $\Phi(a, s) = \emptyset$ means a is not executable in the state s.

- Observations: f \textit{after} a_1, \ldots, a_n.
 - These observations (except of the kind \textit{initially} f) are actually hypothetical statements.
 - Together with a domain description (or a Φ) they define possible initial states.
 - Real observations vs hypothetical statements (or oracles)
 * a \textit{causes} f; b \textit{causes} g; f \textit{after} a; g \textit{after} b is consistent.
 * But only one of a and b happened in the initial state!
A language for observations

• Motivation:
 – Initially the car was parked. The next day the car was gone. Conclusion: The car must have been stolen.
 – I am at home, i have a car, and my suitcase is unpacked. I need to go to the airport with a packed suitcase. I make the plan to pack and then drive to the airport. After packing I observe that my car is no longer there. I can not just execute the remaining part of my old plan. I need to make a new plan from the current situation I am in.
 – I left home and my light switch was working. I came back and turned on the light and it does not work. I need to diagnose what went wrong; but not just a surface level diagnosis about what component is faulty but also a deeper diagnosis explaining what actions caused the fault.

• Syntax of the language:
 – f at t
 – t_1 precedes t_2
\(- \alpha \text{ occurs}_\text{at} \ a\)
\(- \alpha \text{ between} \ t_1, t_2\)
\(- t \) and \(t_i\);s are situations (or time points), \(\alpha\) is a sequence of actions.

• Example 1:
 \(- O = \{\text{has}_{-}\text{car at} \ t_0; \neg \text{has}_{-}\text{car at} \ t_1; t_0 \text{ proceeds} \ t_1\}\)
 \(- D = \{\text{steal}_{-}\text{car causes} \ \neg \text{has}_{-}\text{car}\}\)
 \(- \) From \((D, O)\) we want to conclude that \text{steal}_{-}\text{car} \text{ between} \ t_0, t_1.\)

• Example 2:
 \(- O_1 = \{\text{at}_{-}\text{home at} \ t_0; \text{has}_{-}\text{car at} \ t_0; \neg \text{packed at} \ t_0; \}\)
 \(- D_1 = \{\text{pack causes} \ \text{packed}; \ \text{executable} \text{ pack if} \ \text{at}_{-}\text{home}; \text{steal}_{-}\text{car causes} \ \neg \text{has}_{-}\text{car}; \text{rent}_{-}\text{car causes} \ \text{has}_{-}\text{car}; \text{drive causes} \ \text{at}_{-}\text{airport}; \ \text{executable} \text{ drive if} \ \text{has}_{-}\text{car}; \text{at}_{-}\text{home causes} \ \neg \text{at}_{-}\text{airport}; \ \text{at}_{-}\text{airport causes} \ \neg \text{at}_{-}\text{home}\}\)
 \(- \) From \((D_1, O_1)\) we can conclude that \text{at}_{-}\text{airport}, \text{packed after} \ \text{pack, drive.}\)
 \(- \) I do the packing.
 \(- O_2 = O_1 \cup \{\text{pack occurs}_\text{at} \ t_1; t_0 \text{ proceeds} \ t_1\}.\)
But then I notice that my car is gone.
\[O_3 = O_2 ∪ \{¬\text{has_car at } t_2; t_1 \text{ proceeds } t_2 \} \]

- From \((D_1, O_3)\) I can no longer conclude that \(\text{at_airport}, \text{packed after drive}\).
- But from \((D_1, O_3)\) I should be able to conclude that \(\text{at_airport}, \text{packed after rent _car; drive}\).

- Query language: The language of observations plus
 \[f \text{ after } a_1, \ldots, a_n \text{ at } t. \]
 - If \(t = t_C\), the current situation then we just write
 \[f \text{ after } a_1, \ldots, a_n \]
 - If \(n = 0\) then we write \(f \text{ at } t\).
 - If \(n = 0\) and \(t = t_C\) then we write \(\text{currently } f\).
 - If \(n = 0\) and \(t = t_0\) then we write \(\text{initially } f\).

- \(t_C\) is a special constant and observations are not allowed with respect to this constant.
- A pair \((D, O)\) will now be referred to as a narrative.
Semantics of narratives

- **Defining Φ**
 - An action \(a \) is said to be possibly executable in a state \(s \) w.r.t. a \(D \) if there exists **executable** \(a \) if \(q_1, \ldots, q_r \) in \(D \) such that \(q_1, \ldots, q_r \) hold in \(s \).
 - \(Φ(a, s) = \emptyset \) if \(a \) is not possibly executable in \(s \).
 - Else, \(Φ(a, s) = \{ s' : s' = Cn_R((s \cap s') \cup E_a(s)) \} \) and \(s' \) is an interpretation.

- **Valid states (w.r.t. \(D \))**: States that are closed under the static causal rules in \(D \).

- **Semantic is defined in terms of a trajectory \(τ \) and a situation assignment \(Σ \).**

- **A trajectory \(τ \) of a domain description \(D \) is a sequence of the form**

 \[s_0, a_0, s_1, a_1, \ldots, a_{n-1}, s_n \]

 such that \(s_{i+1} \in Φ(a_i, s_i) \), for \(0 \leq i \leq n - 1 \). By the action sequence of \(τ \) we refer to the sequence \(a_0, \ldots, a_{n-1} \).

 Intuitively \(τ \) selects one of the possible trajectories defined by \(Φ \) as a possible evolution of the world.

- **A situation assignment with respect to \(D \) is a mapping \(Σ \) from situations into the set of action sequences of \(D \) that satisfy the following properties:**
- $\Sigma(t_0) = []$
- for every $t \in S$, $\Sigma(t)$ is a prefix of $\Sigma(t_C)$.

- For a sequence of actions a_0, \ldots, a_m, we say its length is m.

- An interpretation M of (D, O) is a pair (τ, Σ), where τ is a trajectory of D, Σ is a situation assignment, and $\Sigma(t_C)$ is the action sequence in τ.

- For an interpretation $M = (\tau, \Sigma)$ of (D, O), where $\tau = s_0, a_0, s_1, a_1, \ldots, a_{n-1}, s_n$:
 - α occurs at t is true in M if the sequence $\Sigma(t) \circ \alpha$ is a prefix of $\Sigma(t_C)$;
 - α between t_1, t_2 is true in M if $\Sigma(t_1) \circ \alpha = \Sigma(t_2)$;
 - f at t is true in M if f holds in s_{m+1}, where m the length of $\Sigma(t)$;
 - t_1 precedes t_2 is true in M if $\Sigma(t_1)$ is a prefix of $\Sigma(t_2)$.

- An interpretation $M = (\tau, \Sigma)$ is a model of a narrative (D, O) if:

 (i) observations in O are true in M;
 (ii) there is no other interpretation $M' = (\tau', \Sigma')$ such that M' satisfies condition (i) above and τ' is a subsequence of τ.

Observe that these models are minimal in the sense that they exclude extraneous actions.
For a model $M = (\tau, \Sigma)$, $\Sigma(t_C)$ is referred to as the *actual line* w.r.t. M. It encodes how the world has progressed till the current situation.

- A narrative is *consistent* if it has a model. Otherwise, it is *inconsistent*.
- A query q of the form φ after a_1, \ldots, a_n at t is entailed by a narrative (D, O), denoted by $(D, O) \models q$, if φ is true in all states s'_n, where $M = (\tau, \Sigma)$ is a model of (D, O), $\Sigma(t) = b_1, \ldots, b_m$, the sequence $s_0, b_1, s_1, \ldots, b_m, s_{m+1}$ is a prefix of τ, and $s_0, b_1, s_1, \ldots, b_m, s_{m+1}, a_1, s'_1, a_2, s'_2, \ldots, a_n, s'_n$ is a trajectory of (D, O).
- For other kind of queries (i.e., with syntax same as observations):
 - We already defined when they are true in a model.
 - We say such a query q is entailed by a narrative (D, O), denoted by $(D, O) \models q$, if q is true in every model of (D, O).
The stolen car example revisited

- \(D = \{ \text{steal} _\text{car causes } \neg \text{has} _\text{car} \} \)
- \(O = \{ \text{has} _\text{car at } t_0; \neg \text{has} _\text{car at } t_1; t_0 \text{ precedes } t_1 \} \)

- The semantics:
 - States: \(\emptyset, \{ \text{has} _\text{car} \} \).
 - \(\Phi(\text{steal} _\text{car}, \emptyset) = \emptyset; \Phi(\text{steal} _\text{car}, \{ \text{has} _\text{car} \}) = \emptyset. \)
 - \(\tau = \{ \text{has} _\text{car} \}, \text{steal} _\text{car}, \emptyset. \)
 - \(\Sigma(t_0) = []; \Sigma(t_1) = [\text{steal} _\text{car}]; \Sigma(t_C) = [\text{steal} _\text{car}]. \)
 - \((D, O)\) has only one model \(M = (\tau, \Sigma) \).
 - Why is \((\tau', \Sigma')\) not a model?
 (where \(\tau' = \{ \text{has} _\text{car} \}, \text{steal} _\text{car}, \emptyset, \text{steal} _\text{car}, \emptyset, \) and
 \(\Sigma'(t_0) = []; \Sigma'(t_1) = [\text{steal} _\text{car}, \text{steal} _\text{car}]; \Sigma'(t_C) = [\text{steal} _\text{car}, \text{steal} _\text{car}]. \))

- \(D, O \models \text{steal} _\text{car between } t_0, t_1 \)
 because \(\text{steal} _\text{car between } t_0, t_1 \) is true in the only model \(M \) of \((D, O)\)
 because \(\Sigma(t_1) \circ \text{steal} _\text{car} = \Sigma(t_0) \).
An example with multiple models.

- \(O = \{\neg f, \neg g \text{ at } t_0; \ f \text{ at } t_1; \ t_0 \text{ precedes } t_1; \ a_4 \text{ occurs at } t_1\} \)
- \(D = a_1 \text{ causes } g; \ a_2 \text{ causes } f \text{ if } g; \ a_3 \text{ causes } g; \ a_4 \text{ causes } \neg g \text{ if } f\)
- What are the models of \((D, O)\)? What are the actual lines? Does \((D, O) \models \text{ currently } \neg g\)?

<table>
<thead>
<tr>
<th>actions</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>states</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_1 = {\neg f, \neg g})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_2 = {f, \neg g})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_3 = {\neg f, g})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_4 = {f, g})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(\Phi\) is straightforward.
- \(\Sigma_1(t_0) = [], \Sigma_1(t_1) = [a_1, a_2], \Sigma_1(t_C) = [a_1, a_2, a_4]. \tau_1 = ?\)
- \(\Sigma_2(t_0) = [], \Sigma_2(t_1) = [a_1, a_2, a_3], \Sigma_1(t_C) = [a_1, a_2, a_3, a_4]. \tau_2 = ?\)
- \(\Sigma_3(t_0) = [], \Sigma_3(t_1) = [a_3, a_2], \Sigma_3(t_C) = [a_3, a_2, a_4]. \tau_3 = ?\)