DELIBERATIVE ARCHITECTURE: ACCOUNTING FOR OBSERVATIONS
Recap

- Domain description: Define a transition function Φ from actions and states to sets of states.
 - Effect of actions: a causes f if p_1, \ldots, p_m
 - Causality: p_1, \ldots, p_n causes f
 - Executability conditions: executable a if q_1, \ldots, q_r.
 - $\Phi(a, s) = \emptyset$ means a is not executable in the state s.

- Observations: f after a_1, \ldots, a_n.
 - These observations (except of the kind initially f) are actually hypothetical statements.
 - Together with a domain description (or a Φ) they define possible initial states.
 - Real observations vs hypothetical statements (or oracles)
 * a causes f; b causes g; f after a; g after b is consistent.
 * But only one of a and b happened in the initial state!
A language for observations

• Motivation:
 – Initially the car was parked. The next day the car was gone. Conclusion: The car must have been stolen.
 – I am at home, I have a car, and my suitcase is unpacked. I need to go to the airport with a packed suitcase. I make the plan to pack and then drive to the airport. After packing I observe that my car is no longer there. I can not just execute the remaining part of my old plan. I need to make a new plan from the current situation I am in.
 – I left home and my light switch was working. I came back and turned on the light and it does not work. I need to diagnose what went wrong; but not just a surface level diagnosis about what component is faulty but also a deeper diagnosis explaining what actions caused the fault.

• Syntax of the language:
 – $f \text{ at } s$
 – $s_1 \text{ precedes } s_2$
Deliberative architecture: accounting for observations

- α occurs at a
- α between s_1, s_2
- s and s_is are situations (or time points), α is a sequence of actions.

• Example 1:
- $O = \{\text{has car at } s_0; \neg\text{has car at } s_1; s_0 \text{ precedes } s_1\}$
- $D = \{\text{steal car causes } \neg\text{has car}\}$
- From (D, O) we want to conclude that steal car between s_0, s_1.

• Example 2:
- $O_1 = \{\text{at home at } s_0; \text{has car at } s_0; \neg\text{packed at } s_0; \}$
- $D_1 = \{\text{pack causes packed}; \text{executable pack if at home};$
 $\text{steal car causes } \neg\text{has car}; \text{rent car causes } \text{has car};$
 $\text{drive causes at airport}; \text{executable drive if has car};$
 $\text{at home causes } \neg\text{at airport}; \text{at airport causes } \neg\text{at home}\}$
- From (D_1, O_1) we can conclude that at airport, packed after pack, drive.
- I do the packing.
- $O_2 = O_1 \cup \{\text{pack occurs at } s_1; s_0 \text{ precedes } s_1\}$.
- But then I notice that my car is gone.
 \(O_3 = O_2 \cup \{ \neg \text{has_car at } s_2; s_1 \text{ precedes } s_2 \} \)
- From \((D_1, O_3)\) I can no longer conclude that \(\text{at_airport, packed after drive} \).
- But from \((D_1, O_3)\) I should be able to conclude that
 \(\text{at_airport, packed after rent_car; drive} \).

- Query language: The language of observations plus

 \(f \text{ after } a_1, \ldots, a_n \text{ at } s. \)

- If \(s = s_C\), the current situation then we just write

 \(f \text{ after } a_1, \ldots, a_n \)
- If \(n = 0\) then we write \(f \text{ at } s.\)
- If \(n = 0\) and \(s = s_C\) then we write \(\text{currently } f.\)
- If \(n = 0\) and \(s = s_0\) then we write \(\text{initially } f.\)

- \(s_C\) is a special constant and observations are not allowed with respect to this constant.
- A pair \((D, O)\) will now be referred to as a narrative.
Semantics of narratives

• Defining Φ

 – An action a is said to be possibly executable in a state s w.r.t. a D if there exists executable a if q_1, \ldots, q_r in D such that q_1, \ldots, q_r hold in s.

 – $\Phi(a, s) = \emptyset$ if a is not possibly executable in s.

 – Else, $\Phi(a, s) = \{s' : s' = Cn_R((s \cap s') \cup E_a(s))$ and s' is an interpretation $\}$.

• Valid states (w.r.t. D): States that are closed under the static causal rules in D.

• Semantics is defined in terms of a causal model Ψ and a situation assignment Σ.

• A causal model Ψ of a domain description D is a function from action sequences to valid states such that

 – $\Psi([])$ is a valid state.

 – If $\Phi(a, \Psi(\alpha)) \neq \emptyset$ then $\Psi(\alpha \circ a) \in \Phi(a, \Psi(\alpha))$ else $\Psi(\alpha \circ a)$ is undefined.

Intuitively Ψ selects one of the possible trajectories defined by Φ as a possible evolution of the world.
A *situation assignment* with respect to D is a mapping Σ from situations into the set of action sequences of D that satisfy the following properties:

- $\Sigma(s_0) = []$;
- for every $s \in S$, $\Sigma(s)$ is a prefix of $\Sigma(s_C)$.

An *interpretation* M of (D, O) is a pair (Ψ, Σ), where Ψ is a causal model of D, Σ is a situation assignment, and $\Sigma(s_C)$ is defined.

For an interpretation $M = (\Psi, \Sigma)$ of (D, O):

- α occurs_at s is true in M if the sequence $\Sigma(s) \circ \alpha$ is a prefix of $\Sigma(s_C)$;
- α between s_1, s_2 is true in M if $\Sigma(s_1) \circ \alpha = \Sigma(s_2)$;
- f at s is true in M if f holds in $\Psi(\Sigma(s))$;
- s_1 precedes s_2 is true in M if $\Sigma(s_1)$ is a prefix of $\Sigma(s_2)$.

An interpretation $M = (\Psi, \Sigma)$ is a *model* of a narrative (D, O) if:

(i) observations in O are true in M;
(ii) there is no other interpretation $M' = (\Psi, \Sigma')$ such that M' satisfies condition (i) above and $\Sigma'(s_C)$ is a subsequence of $\Sigma(s_C)$.
Observe that these models are minimal in the sense that they exclude extraneous actions.

For a model $M = (\Psi, \Sigma)$, $\Sigma(s_C)$ is referred to as the actual line w.r.t. M. It encodes how the world has progressed till the current situation.

- A narrative is *consistent* if it has a model. Otherwise, it is *inconsistent*.
- A query of the form φ after α at s is true in a model $M = (\Psi, \Sigma)$ if φ is true in $\Psi(\Sigma(s) \circ \alpha)$.
- We already defined when other kind of queries (i.e., observations) are true in a model.
- A query q is entailed by a narrative (D, O), denoted by $(D, O) \models q$, if q is true in every model of (D, O).
The stolen car example revisited

- $D = \{\text{steal_car causes } \neg \text{has_car}\}$
- $O = \{\text{has_car at } s_0; \neg \text{has_car at } s_1; s_0 \text{ proceeds } s_1\}$
- The semantics:
 - States: $\emptyset, \{\text{has_car}\}$
 - $\Phi(\text{steal_car}, \emptyset) = \emptyset; \Phi(\text{steal_car}, \{\text{has_car}\}) = \emptyset$
 - $\Psi(\emptyset) = \{\text{has_car}\}; \Psi(\alpha \circ \text{steal_car}) = \emptyset$
 - $\Sigma(s_0) = []; \Sigma(s_1) = [\text{steal_car}]; \Sigma(s_C) = [\text{steal_car}]$
 - (D, O) has only one model $M = (\Psi, \Sigma)$
 - Why is (Ψ, Σ') not a model?
 (where $\Sigma'(s_0) = []; \Sigma'(s_1) = [\text{steal_car, steal_car}]; \\
 \Sigma'(s_C) = [\text{steal_car, steal_car}].)$
- $D, O \models \text{steal_car between } s_0, s_1$
 because $\text{steal_car between } s_0, s_1$ is true in the only model M of (D, O)
 because $\Sigma(s_1) \circ \text{steal_car} = \Sigma(s_0)$.
An example with multiple models.

- $O = \{\neg f, \neg g \text{ at } s_0; \ f \text{ at } s_1; \ s_0 \text{ precedes } s_1; \ a_4 \text{ occurs at } s_1\}$
- $D = a_1 \text{ causes } g; \ a_2 \text{ causes } f \text{ if } g; \ a_3 \text{ causes } g; \ a_4 \text{ causes } \neg g \text{ if } f\}$

- What are the models of (D, O)? What are the actual lines? Does $(D, O) \models \text{ currently } \neg g$?

<table>
<thead>
<tr>
<th>actions</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>states</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_1</td>
<td>${\neg f, \neg g}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>${f, \neg g}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>${\neg f, g}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td>${f, g}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Φ and Ψ are straightforward.

- $\Sigma_1(s_0) = [\], \Sigma_1(s_1) = [a_1, a_2], \Sigma_1(s_C) = [a_1, a_2, a_4].$
- $\Sigma_2(s_0) = [\], \Sigma_2(s_1) = [a_1, a_2, a_3], \Sigma_1(s_C) = [a_1, a_2, a_3, a_4].$
- $\Sigma_3(s_0) = [\], \Sigma_3(s_1) = [a_3, a_2], \Sigma_3(s_C) = [a_3, a_2, a_4].$