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Abstract

We consider the problem of how an agent’s knowledge can be updated. We propose a
formal method of knowledge update on the basis of the semantics of modal logic S5.
In our method, an update is specified according to the minimal change on both the
agent’s actual world and knowledge. We discuss general minimal change properties
of knowledge update and show that our knowledge update operator satisfies all
Katsuno and Mendelzon’s update postulates. We characterize several specific forms
of knowledge update which have important applications in reasoning about change
of agents’ knowledge. We also examine the persistence property of knowledge and
ignorance associated with knowledge update.

We then investigate the computational complexity of model checking for knowledge
update. We first show that in general the model checking for knowledge update
is ΣP

2 -complete, which places the problem at the same layer in the polynomial
hierarchy of the traditional model based belief update (e.g. PMA). We then identify
a subclass of knowledge update problems that has polynomial time complexity for
model checking. We point out that some important knowledge update problems
belong to this subclass. We further address another interesting subclass of knowledge
update problems for which the complexity of model checking is NP-complete.

1 This paper is based on the authors’ two conference papers from IJCAI-2001 [1]
and KR-2002 [2].
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1 Introduction and motivation

The well-studied issues of belief updates and belief revision [13] are concerned
with the update and revision aspects of an agent’s belief with respect to new
beliefs. The notion of belief update has been used, and often serves as a guide-
line [12,24], in reasoning about the effect of (world altering) actions on the
state of the world. Thus if φ represents the agent’s belief about the world and
the agent performs an action that is supposed to make ψ true in the resulting
world, then the agent’s belief about the resulting world can be described by
φ ¦ ψ, where ¦ is the update operator of choice.

Now let us consider reasoning about sensing actions [22,23], which in their
pure form, when executed, do not change the world, but change the agent’s
knowledge about the world. Let sensef be a sensing action whose effect is
that after it is executed the agent knows whether f is true or not. This can be
expressed as Kf ∨K¬f , where K is the modal operator Knows. The current
theory of belief updates does not tell us how to do updates with respect to
such gain in knowledge due to a sensing action. (Note that we can not just
have ψ ≡ f ∨ ¬f and use the the notion of belief update, as f ∨ ¬f is a
tautology). The major goal of this paper is to define a notion of knowledge
update, analogous to belief update, where the original theory (φ) and the
new theory (ψ) are in a language that can express knowledge. Such a notion
would not only serve as a guideline to reason about pure and mixed sensing
actions in presence of constraints, but also allow us to reason about actions
corresponding to forgetting and ignorance.

We then investigate the computational complexity of model checking for
knowledge update. We first show that in general the model checking prob-
lem for knowledge update is ΣP

2 -complete, which places the problem at the
same layer of the polynomial hierarchy than the traditional model based belief
update (e.g. PMA) [16]. We further identify a subclass of knowledge update
problems for which model checking can be achieved in polynomial time. We
show that some important knowledge update problems belong to this sub-
class. Finally, we address another interesting subclass of knowledge updates
for which the complexity for model checking is NP-complete.

The structure of the rest of the paper is as follows. In Section 2 we start with
describing the particular modal logic that we plan to use in expressing knowl-
edge, and describe the notion of k-models analogous to ‘models’ in classical
logic. We define closeness between k-models and use it to define a particular
notion of knowledge update. In Section 3 we discuss minimal change properties
of knowledge update. An interesting result shows that our knowledge update
operator satisfies all Katsuno and Mendelzon’s update postulates. In Section
4, we present alternative characterizations of four particular knowledge up-
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dates – gaining knowledge, ignorance, sensing, and forgetting, and show their
equivalence to our original notion of knowledge update. Some of these al-
ternative characterizations are based on the formulation of reasoning about
sensing actions, and thus our equivalence results serve as justification of the
intuitiveness of our definition of knowledge update. In Section 5 we explore
sufficiency conditions that guarantee persistence of knowledge (or ignorance)
during a knowledge update. From Section 6 we start to investigate model
checking complexity for knowledge update. In Section 6 we first give general
background on computational complexity. In Section 7, we study the model
checking complexity for the general case of knowledge update. In Section 8, we
define a subclass of knowledge update problems whose model checking can be
achieved in polynomial time. In Section 9, we further address an interesting
intractable subclass of knowledge update problems whose model checking is
lower than the genral case. Finally, in Section 10, we conclude this paper with
some remarks discussions.

2 Closeness between k-models and knowledge update

In this section, we describe formal definitions for knowledge update. Our for-
malization will be based on the semantics of the propositional modal logic S5
with a single agent. In general, under Kripke semantics, a Kripke structure is
a triple (W,R, π), where W is a set of possible worlds, R is an equivalence
relation on W , and π is a truth assignment function that assigns a proposi-
tional valuation to each world in W . Given a Kripke structure S = (W,R, π),
a Kripke interpretation is a pair M = (S, w), where w ∈ W is referred to the
actual world of M . The entailment relation |= between Kripke interpretations
and formulas is defined to provide semantics for formulas of S5 [4].

In the case of single agent, however, we may restrict ourselves to those S5
structures in which the relation R is universal, i.e. each world is accessible
from every world, and worlds are identified with the set of atoms true at
the worlds [20]. To simplify a comparison between two worlds (e.g. Definition
2), we may view an atom p ∈ w iff w |= p. Therefore, in our context a
Kripke structure (W,R, π) is uniquely characterized by W and we may simplify
a Kripke interpretation as a pair (W,w) which we call a k-model, where w
indicates the actual world of the agent and W presents all possible worlds
that the agent may access. Note that w is in W for any k-model (W,w).

In our following description, we use a, b, c, · · · to denote primitive propositional
atoms; φ, ψ, υ, · · · to denote propositional formulas without including modali-
ties (we also call them objective formulas); and α, β, γ, µ, · · · to denote formulas
that may contain modal operator K. For convenience, we use T ≡ α1∧· · ·∧αk

to represent a finite set of formulas {α1, · · · , αk} and call T a (knowledge) set.
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Definition 1 (S5 Semantics) Let P be the set of all primitive propositions
in the language. The entailment relation |= under normal S5 semantics is
defined as follows:

(1) (W,w) |= p iff p is primitive (i.e. p ∈ P) and w |= p;
(2) (W,w) |= α ∧ β iff (W,w) |= α and (W,w) |= β;
(3) (W,w) |= ¬α iff it is not the case that (W,w) |= α;
(4) (W,w) |= Kα iff (W,w′) |= α for all w′ ∈ W .

Given a formula T , M = (W,w) is called a k-model of T if M |= T . We use
Mod(T ) to denote the set of all k-models of T . For an objective formula φ,
Mod(φ) simply denotes the set of worlds w where w |= φ. In this case, w is
also called a model of φ. For a formula α, we say that T entails α, denoted as
T |= α, if for every k-model M of T , M |= α.

Now the basic problem of knowledge update that we would like to investigate
is formally described as follows: given a k-model M = (W,w), that is usually
viewed as a knowledge state of an agent, and a formula µ - the agent’s new
knowledge that may contain modal operator K, how do we update M to
another k-model M ′ = (W ′, w′) such that M ′ |= µ and M ′ is minimally
different from M with respect to some criterion. To approach this problem,
we first need to provide a definition of closeness between two k-models with
respect to a given k-model.

Definition 2 (Closeness between k-models) Let M = (W,w), M1 =
(W1, w1) and M2 = (W2, w2) be three k-models. We say M1 is as close to
M as M2, denoted as M1 ≤M M2, if:

(1) (w1 \ w ∪ w \ w1) ⊂ (w2 \ w ∪ w \ w2); or
(2) w1 = w2 and one of the following conditions holds:

(i) W1 = W2;
(ii) if W ⊂ W1, then (a) there exist some φ and ψ such that M |= Kφ

and M2 6|= Kφ and M 6|= Kψ and M2 |= Kψ, or (b) for any φ if
M |= Kφ and M1 6|= Kφ, then M2 6|= Kφ;

(iii) if W1 ⊂ W , then condition (a) above is satisfied, or (c) for any φ if
M 6|= Kφ and M1 |= Kφ, then M2 |= Kφ;

(iv) if W 6⊂ W1 and W1 6⊂ W , then conditions (b) and (c) above are
satisfied.

We denote M1 <M M2 if M1 ≤M M2 and M2 6≤M M1.

In the above definition, condition 1 simply says that the symmetric differences
between w and w1 is a proper subset of that between w and w2, while in
condition 2, (ii), (iii) and (iv) express that different preferences are applied
to compare knowledge between M1 and M2 with respect to M (note that (i)
is just for the case that M1 and M2 are identical). For convenience, given
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a k-model M , if we denote KM = {φ | for all w ∈ W,w |= φ}, then (a)
is equivalent to KM \ KM2 6= ∅ and KM2 \ KM 6= ∅; (b) is equivalent to
KM \KM1 ⊆ KM \KM2; and (c) is equivalent to KM1\KM ⊆ KM2\KM .
Also (b) and (c) together present a difference on both knowledge decrease and
increase between M1 and M2 in terms of M .

Note that during the comparison between two k-models, we give preference to
the change of the actual world over the change of knowledge about the world.
(The closeness criterion between actual worlds that we use is the commonly
used criterion [25] based on symmetric difference). For instance, if the actual
world of a k-model M1 is closer to the actual world of M than the actual world
of another k-model M2, we will think M1 is closer to M and the comparison of
knowledge between M1 and M2 is ignored. Only when both M1 and M2 have
the same actual world, we will compare knowledge of M1 and M2 in terms of
M . This seems to be intuitive to us. In fact, the comparison between actual
worlds determines the actual distance between two k-models to the given k-
model M . If M1 and M2 have the same actual distance to M , the knowledge
distance is then taken into account.

Basically, condition (ii) (or (iii) resp.) in Definition 2 defines a knowledge
preference based on knowledge decrease (or increase resp). That is, if M1 only
looses knowledge from M (or only gains some knowledge to M , resp.), then
M1 is preferred over those k-models that have both knowledge decrease and
increase from M , i.e. (a), and also preferred over those k-models that only
loose more knowledge from M (or add more knowledge to M , resp.) than M1

does, i.e. (b) or (c) respectively. Condition (iv), on the other hand, deals with
the mixed situation that M1 has both knowledge decrease and increase from
M . In this case, a combined difference on knowledge decrease and increase is
applied to determine the knowledge distance, i.e. (b) and (c). Conditions (ii),
(iii) and (iv) can be illustrated by the following figures respectively.

KM2

KM

KM1

KM2

KM

KM1

Fig. 1. M1 ≤M M2 under the condition w1 = w2 and W ⊂ W1: (a) or (b) holds.

Definition 3 (k-model Update) Let M = (W,w) be a k-model and µ a
formula. A k-model M ′ = (W ′, w′) is called a possible resulting k-model after
updating M with µ if and only if the following conditions hold:

(1) M ′ |= µ;
(2) there does not exist another k-model M ′′ = (W ′′, w′′) such that M ′′ |= µ

and M ′′ <M M ′.
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We denote the set of all possible resulting k-models after updating M with µ
as Res(M,µ).

KM2

KM1KM2

KM

KM1

KM

Fig. 2. M1 ≤M M2 under the condition w1 = w2 and W1 ⊂ W : (a) or (c) holds.

KM

KM2

KM1

Fig. 3. M1 ≤M M2 under the condition w1 = w2, W 6⊂ W1 and W1 6⊂ W : (b) and
(c) hold.

Example 1 Let T ≡ Kc ∧¬Ka ∧¬Kb ∧K(a∨ b) and µ ≡ K¬c. We denote

w0 = {a, b, c}, w1 = {a, c}, w2 = {b, c},
w3 = {c}, w4 = {a, b}, w5 = {a},
w6 = {b}, w7 = ∅.

Clearly, M0 = ({w0, w1, w2}, w0) is a k-model of T . Consider the update of
M0 with µ. Let M1 = ({w4, w5, w6}, w4). Now we show that M1 is a possible
resulting k-model after updating M0 with µ.

Since (w0 \ w4 ∪ w4 \ w0) = {c}, we first consider any possible k-model M ′ =
(W ′, w′) such that (w0\w′∪w′\w0) ⊂ {c}. Clearly, the only possible w′ would be
w0 itself. Let M ′ = (W ′, w0), where W ′ is a subset of {w0, · · · , w7}. However,
since c ∈ w0, there does not exist any W ′ such that M ′ |= K¬c. Therefore,
from Definition 2, only condition 2 can be used to find a possible M ′ such
that M ′ <M M1. So we assume M ′ = (W ′, w4). On the other hand, from M0

and M1, it is easy to see that KM0 = {c, a ∨ b} and KM1 = {¬c, a ∨ b} 2 .
Then we have KM0 \ KM1 = {c} and KM1 \ KM0 = {¬c}. Ignoring the
detailed verifications, we can show that there does not exist such M ′ = (W ′, w4)
satisfying KM0 \KM ′ = KM ′ \KM0 = ∅.

Based on the k-model update, updating a formula (knowledge set) T in terms
of another formula µ is then achieved by updating every k-model of T with µ.

2 For simplicity, here we only consider the prime formulas φ in KM in the sense
that if φ ∈ KM , then there is not another ψ such that |= ψ ⊃ φ and ψ ∈ KM .

6



Definition 4 (Knowledge update) Let T and µ be two formulas. The
update of T with µ, denoted as T ¦ µ, is defined by Mod(T ¦ µ) =⋃

M∈Mod(T ) Res(M,µ).

3 Minimal change of knowledge update

In this section, we investigate minimal change properties of knowledge update.
Specifically, we examine the relationship between knowledge update and the
classical Katsuno and Mendelzon’s update postulates. TiFirstly, the following
proposition presents some useful results about knowledge update.

Proposition 1 Let M1 = (W1, w1) and M2 = (W2, w2) be two k-models. Then
the following properties hold:

(1) φ ∈ KM1 iff W1 ⊆ Mod(φ);
(2) W1 ⊆ W2 iff KM2 ⊆ KM1;
(3) KM1 = KM2 iff W1 = W2;
(4) Let M ′ = (W1 ∪W2, w

′), then KM ′ = KM1 ∩KM2;
(5) Let w′ ∈ W1 ∩W2 and M ′ = (W1 ∩W2, w

′), then KM1 ∪KM2 ⊆ KM ′.

Proof: (1). (⇒) From φ ∈ KM , we have for all w′ ∈ W , w′ |= φ (note that
φ is a formula without containing modal operator K). That is, w′ ∈ Mod(φ).
So W ⊆ Mod(φ).

(⇐) Suppose W ⊆ Mod(φ). Then we have for any w′ ∈ W , w′ |= φ. That is,
φ ∈ KM .

(2). Let
∧

KM1 and
∧

KM2 be the conjunctions of all formulas in KM1

and KM2 respectively. Then it is clear that Mod(
∧

KM1) = W1 and
Mod(

∧
KM2) = W2. So we have KM2 ⊆ KM1 iff Mod(

∧
KM1) ⊆

Mod(
∧

KM2) iff W1 ⊆ W2.

(3). In the proof of 2, we stated that Mod(
∧

KM1) = W1 and Mod(
∧

KM2) =
W2. So KM1 = KM2 iff Mod(

∧
KM1) = Mod(

∧
KM2) iff W1 = W2

3 .

(4). According to the definition of M ′, we have φ ∈ KM ′ iff for all w′ ∈
W1 ∪W2, w′ |= φ iff for all w′ ∈ W1, w′ |= φ and for all w′′ ∈ W2, w′′ |= φ iff
φ ∈ KM1 and φ ∈ MK2 iff φ ∈ KM1 ∩KM2.

(5). According to the definition of M ′, from φ ∈ KM1 ∪ KM2, we have
φ ∈ KM1 or φ ∈ KM2. So for any w′ ∈ W1 ∩ W2, we have w′ |= φ. That

3 This property also indicates that knowledge represented by a k-model M = (W,w)
is independent of the actual world w.
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is, φ ∈ KM ′.

Given a set of k-models S and a k-model M , let ≤M be an ordering on S as
we defined in Definition 2. By Min(S,≤M) we mean the set of all elements in
S that are minimal with respect to ordering ≤M . The following proposition
simply shows that ≤M is a partial ordering.

Proposition 2 Let M be a k-model. Then ≤M defined in Definition 2 is a
partial ordering.

Proof: From Definition 2, it is clear that ≤M is reflexive and antisymmet-
ric. Now we prove ≤M is also transitive. Let M = (W,w), M1 = (W1, w1),
M2 = (W2, w2) and M3 = (W3, w3) be k-models, and M1 ≤M M2 and
M2 ≤M M3. Now we prove M1 ≤M M3.
Case 1. Suppose M1 ≤M M2 is due to condition (1) in Definition 2, i.e.
(w1\w∪w\w1) ⊂ (w2\w∪w\w2). Consider M2 ≤M M3. According to Defini-
tion 2, either condition (1) or (2) is satisfied. If condition (1) is satisfied, then
(w2\w∪w\w2) ⊂ (w3\w∪w\w3). This follows (w1\w∪w\w1) ⊂ (w3\w∪w\w3).
So M1 ≤M M3. If condition (2) is satisfied, it means w2 = w3, it also follows
(w1 \ w ∪ w \ w1) ⊂ (w3 \ w ∪ w \ w3), and therefore M1 ≤M M3.
Case 2. Now suppose M1 ≤M M2 is due to condition (2) in Definition 2, i.e.
w1 = w2 and one of conditions (i), (ii), (iii), or (iv) is satisfied. If M2 ≤M M3

is due to condition (1) in Definition 2, i.e. (w2 \w∪w\w2) ⊂ (w3 \w∪w\w3),
it follows that M1 ≤M M3 because w1 = w2. Suppose M2 ≤M M3 is due to
condition (2) in Definition 2, that is, w2 = w3 and one of conditions (i), (ii),
(iii) or (iv) is satisfied. Here we only consider the following three cases, while
all other cases can be proved in a similar way.
Case 2.1. Both M1 ≤M M2 and M2 ≤M M3 are due to condition (2) and (ii) in
Definition 2. Under this case, we can only have (a) KM3 ⊂ KM2 ⊂ KM1 ⊂
KM ; or (b) KM2 ⊂ KM1 ⊂ KM but KM \KM2 6= ∅ and KM2 \KM 6= ∅.
Clearly, in either case, we have M1 ≤M M3.
Case 2.2. M1 ≤M M2 is due to condition (2) and (ii) and M2 ≤M M3 are due
to condition (2) and (iii) in Definition 2. By analyzing Definition 2, it con-
cludes that this situation will never occur. This is because from M1 ≤M M2,
we can only have either KM2 ⊂ KM or KM \KM2 6= ∅ and KM2 \KM 6= ∅,
and from M2 ≤M M3, we can only have KM ⊂ KM2. Obviously, these two
cases conflict with each other.
Case 2.3. M1 ≤M M2 is due to condition (2) and (ii) and M2 ≤M M3 are due
to condition (2) and (iv) in Definition 2. In this case, we will have KM1 ⊂ KM
and KM2 \KM 6= ∅ and KM \KM2 6= ∅. This implies M1 ≤M M3.

Theorem 1 Let T and µ be two formulas. Then Mod(T ¦ µ) =⋃
M∈Mod(T ) Min(Mod(µ),≤M).
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Proof: To prove the result, we only need to show that for each k-model
M of T , Res(M,µ) = Min(Mod(µ),≤M). Let M ′ ∈ Res(M,µ). Since
M ′ |= µ, M ′ ∈ Mod(µ). On the other hand, according to Definition 3, for
any M ′′ ∈ Mod(µ), we have M ′′ 6<M M ′. That is, M ′ ∈ Min(Mod(µ),≤M).
So Res(M, µ) ⊆ Min(Mod(µ),≤M). Similarly, we can show Min(Mod(µ),≤M

) ⊆ Res(M,µ).

The above theorem provides an important characterization on knowledge up-
date in terms of a particular minimal change criterion. Now the question we are
interested in is whether our knowledge update operator satisfies some classi-
cal properties of belief (knowledge base) update. In recent years, belief update
has been extensively studied by many researchers and its difference from belief
revision is well understood [9,18,27]. From the observation of semantic differ-
ence between belief update and revision, Katsuno and Mendelzon argued that
the original revision postulates proposed by Gardenfors el al. [5] are not quite
suitable for update, and ignoring such difference may lead to unreasonable so-
lutions [13]. Instead, Katsuno and Mendelzon proposed alternative postulates
for any update operator ¦ as follows.

(U1) T ¦ µ implies µ.
(U2) If T implies µ then T ¦ µ ≡ T .
(U3) If both T and µ are satisfiable then T ¦ µ is also satisfiable.
(U4) If T1 ≡ T2 and µ1 ≡ µ2 then T ¦ µ1 ≡ T2 ¦ µ2.
(U5) (T ¦ µ) ∧ α implies T ¦ (µ ∧ α).
(U6) If T ¦ µ1 implies µ2 and T ¦ µ2 implies µ1 then T ¦ µ1 ≡ T ¦ µ2.
(U7) If T is complete then (T ¦ µ1) ∧ (T ¦ µ2) implies T ¦ (µ1 ∨ µ2).
(U8) (T1 ∨ T2) ¦ µ ≡ (T1 ¦ µ) ∨ (T2 ¦ µ).

Under the context of S5 modal logic, we may think all formulas occurring in
the above postulates are S5 formulas. The following theorem shows that our
knowledge update operator satisfies all these postulates.

Theorem 2 Knowledge update operator ¦ defined in Definition 4 satisfies
Katsuno and Mendelzon’s update postulates (U1)-(U8).

Proof: From Definitions 3 and 4, it is easy to verify ¦ satisfies postulates (U1)-
(U4). Now we prove ¦ satisfies (U5). To prove that (T ¦µ)∧α implies T ¦ (µ∧
α), it is sufficient to prove that for each k-model of T , say M , Res(M, µ) ∩
Mod(α) ⊆ Res(M, µ ∧ α). In particular, we need to show for any M ′ ∈
Res(M,µ) ∩ Mod(α), M ′ ∈ Res(M,µ ∧ α). Suppose M ′ 6∈ Res(M, µ ∧ α).
According Definition 3, we have (1) M ′ 6|= µ ∧ α; or (2) there exists another
k-model M ′′ such that M ′′ |= µ∧α and M ′′ <M M ′. If it is case (1), it follows
that M ′ 6∈ Res(M,µ)∩Mod(α). Then the result holds. If it is case (2), it also
implies that M ′′ |= µ and M ′′ <M M ′. That means, M ′ 6∈ Res(M, µ) from
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Defintion 3. The result still holds.

Now we prove ¦ satisfies (U6). Similarly, to prove ¦ satisfies (U6), we only
need to prove for any k-model of T , say M , if Res(M, µ1) ⊆ Mod(µ2)
and Res(M, µ2) ⊆ Mod(µ1), then Res(M, µ1) = Res(M,µ2). We first prove
Res(M,µ1) ⊆ Res(M,µ2). Let M ′ ∈ Res(M,µ1). Then M ′ |= µ2. Suppose
M ′ 6∈ Res(M, µ2). This follows that there exists another M ′′ ∈ Res(M, µ2)
such that M ′′ <M M ′. Also note that M ′′ |= µ1. This contradicts the fact that
M ′ 6∈ Res(M,µ2). This proves Res(M, µ1) ⊆ Res(M, µ2). Similarly, we can
prove Res(M, µ2) ⊆ Res(M,µ1).

Now we prove ¦ satisfies (U7). Since T is complete, it follows that T has a
unique k-model M . So we only need to prove Res(M,µ1) ∩ Res(M, µ2) ⊆
Res(M,µ1 ∨ µ2). Let M ′ ∈ Res(M, µ1) ∩ Res(M,µ2). Suppose M ′ 6∈
Res(M,µ1 ∨ µ2). Then there exists a k-model M ′′ ∈ Res(M, µ1 ∨ µ2) such
that M ′′ <M M ′. Note that M ′′ |= µ1 ∨ µ2. If M ′′ |= µ1, it will follow that
M ′ 6∈ Res(Mu, µ1), otherwise, M ′ 6∈ Res(Mu, µ2). In either case, we have
M ′ 6∈ Res(M, µ1) ∩Res(M, µ2). This proves the result.

Finally, the fact that ¦ satisfies (U8) is obtained straightforward from Defini-
tions 3 and 4.

4 Characterizing specific knowledge updates

While the previous section studies general minimal change properties of our
knowledge update, alternative characterizations of knowledge update can be
described for several specific forms. These specific forms present important
features of knowledge update, and their alternative characterizations are con-
venient when the use of the notion of knowledge update becomes an overkill.
For example, the alternative characterization of sensing update below is a
much simpler characterization that is used in reasoning about sensing actions
[22,23].

4.1 Gaining knowledge update

We first introduce a notation that will be useful in our following discussions.
Let W be a set of worlds and w ∈ W . By W (w,φ), we denote the set {w′ | w′ ∈
W and w′ |= φ iff w |= φ}.

Proposition 3 Given T and Kφ where φ is objective and T |= φ. Then
M ′ = (W ′, w′) is a k-model of T ¦ Kφ if and only if there exists a k-model
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M = (W,w) of T such that w = w′ and W ′ = W (w,φ).

Proof: Since T |= φ, we have W (w,φ) = {w′ | w′ ∈ W and w′ |= φ}. Let
M ′ = (W (w,φ), w). Firstly, from the condition 1 of Definition 2, it is easy to
see that for any M ′′ = (W ′′, w′′) where w′′ 6= w, M ′ <M M ′′. Therefore, from
Theorem 1, to prove the result, it is sufficient to prove that for any k-model
M ′′ = (W ′′, w) where W ′′ 6= W (w,φ), M ′ ≤M M ′′. We consider the following
possible cases.
Case 1. W ′′ ⊂ W (w,φ). Since W (w,φ) ⊆ W , from Proposition 1, we have
KM ⊆ KM ′ ⊆ KM ′′, and hence KM ′ \ KM ⊆ KM ′′ \ KM . From Defi-
nition 2, it follows M ′ ≤M M ′′.
Case 2. W (w,φ) ⊂ W ′′ (proper set inclusion). Without loss of generality, we
assume W ′′ = W (w,φ) ∪ {wi}, where wi |= φ. Clearly, wi 6∈ W otherwise we
will have wi ∈ W (w,φ) and then W ′′ = W (w,φ). Since W ′′ 6⊆ W and W 6⊆ W ′′,
from Proposition 1, we have KM 6⊆ KM ′′ and KM ′ 6⊆ KM . Then it must be
the case that KM \KM ′′ 6= ∅ and KM ′′ \KM 6= ∅. From Definition 2 (i.e.
(iii) in condition 2), we know that M ′ ≤M M ′′.
Case 3. W (w,φ) 6⊂ W ′′ and W ′′ 6⊂ W (w,φ). Without loss of generality, we can
assume that W ′′ = W (w,φ) ∪ {wi} \ {wj}, where wj ∈ W (w,φ). Since we require
that M ′′ |= Kφ, it follows that wi |= φ. Also, from the construction of W (w,φ),
we know that wi 6∈ W otherwise it reduces to the case that W ′′ ⊆ W (w,φ).
Therefore, W ′′ 6⊆ W and W 6⊆ W ′′. From the above discussion, it follows that
KM \ KM ′′ 6= ∅ and KM ′′ \ KM 6= ∅. So from Definition 2, we know that
M ′ ≤M M ′′.

The above proposition reveals an important property about knowledge up-
date: to know some fact, the agent only needs to restrict the current possible
worlds in each of her k-models, if this fact itself is already entailed by her cur-
rent knowledge set. We call this kind of knowledge update gaining knowledge
update.

Example 2 Let T ≡ a∧¬Ka∧Kb. Suppose w0 = {a, b}, w1 = {a}, w2 = {b}
and w3 = ∅. Then T has one k-model M = ({w0, w2}, w0). Updating M with
Ka, according to our k-model update definition, we have a unique resulting
k-model M ′ = ({w0}, w0). Indeed, this result is also obtained from Proposition
3.

4.2 Ignorance update

As a contrary case to the gaining knowledge update, we now character-
ize an agent ignoring a fact from her knowledge set which we call ig-
norance update, i.e. updating T with ¬Kφ. From Definition 1, it is easy
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to see that T ¦ ¬φ |= ¬Kφ. However, it should be noted that updating
T ¦ ¬φ can not be used to achieve T ¦ ¬Kφ. Consider a k-model M =
({{a, b}, {a}}, {a, b}). Updating M with ¬Ka we have a possible resulting
k-model M ′ = ({{a, b}, {a}, {b}}, {a, b}), while updating M with ¬a will lead
to a possible result M ′′ = ({{a, b}, {a}, {b}}, {b}). Note that both M ′ and M ′′

entail ¬Ka, but M ′ <M M ′′ according to Definition 2.

Proposition 4 Given T and µ ≡ ¬Kφ where φ is objective. M ′ = (W ′, w′)
is a k-model of T ¦ ¬Kφ if and only if there exists a k-model M = (W,w) of
T such that

(i) if M |= Kφ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= ¬φ;
(ii) otherwise, w′ = w and W ′ = W .

Proof: Let µ ≡ ¬Kφ and M = (W,w) be a k-model of T . Then it is easy
to see that for two k-models M ′ = (W ′, w′) and M ′′ = (W ′′, w′′) such that
M ′ |= µ and M ′′ |= µ, and w′ = w and w′′ 6= w, M ′ <M M ′′. So M ′′ can not
be a k-model of T ¦ µ. In other words, a k-model of T ¦ µ must have a form
M ′ = (W ′, w).

From Theorem 1, to prove the result, we only need to show that for any
k-model M ′′ = (W ′′, w) such that M ′′ |= µ and W ′′ 6= W ∪ {w∗} where
w∗ |= ¬phi, M ′ ≤M M ′′.

Suppose M |= Kφ. Let M ′ = (W ∪ {w∗}, w), where w∗ |= ¬φ. We first show
that for any k-model M ′′ = (W ′′, w) such that M ′′ |= ¬Kφ and W ′′ does not
have a form of W ∪ {wi}, M ′ ≤M M ′′.

Case 1. Suppose W ′ ⊂ W ′′. This implies that KM ′′ ⊆ KM ′ ⊆ KM from
Proposition 1. So M ′ ≤M M ′′ according to Definition 2 (condition (b)).
Case 2. Suppose W ′′ ⊂ W ′. Without loss of generality, we assume that W ′′ =
W ∪{w∗} \{wj} where wj ∈ W . This follows that W 6⊂ W ′′ and W ′′ 6⊂ W . So
it is the case that KM \KM ′′ 6= ∅ and KM ′′ \KM 6= ∅. On the other hand,
we have W ⊆ W ′, from Definition 2 (i.e. condition (a)), we have M ′ ≤M M ′′.
Case 3. Suppose W ′′ 6⊂ W ′ and W ′ 6⊂ W ′′. Without loss of generality, we can
assume that W ′′ = W ∪ {w∗, wi} \ {wj}, where wj ∈ W and w∗, wi 6∈ W .
Again, this results to the situation that W 6⊂ W ′′ and W ′′ 6⊂ W . From the
above discussion, it implies that M ′ ≤M M ′′.

Now we show that for any k-model M ′′ that is of the form M ′′ = (W ∪{wi}, w)
and wi is any world such that wi |= ¬φ (note M |= Kφ), M ′ 6≤M M ′′ and
M ′′ 6≤M M ′. Suppose M ′ ≤M M ′′. Since W ⊂ W ∪ {w∗}, then according to
Definition 2, condition (a) or (b) should be satisfied. As W ⊂ W ∪ {wi}, con-
dition (a) can not be satisfied. So condition (b) must be satisfied. That is, for
any ψ such that M |= Kψ and M ′ 6|= Kψ, M ′′ |= Kψ. However, this implies
that KM \KM ′ ⊆ KM \KM ′′, and also KM ∩KM ′′ ⊆ KM ∩KM ′. From
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Proposition 1 (Results 2 and 4), it follows that W ∪W ′ ⊆ W ∪W ′′, that is,
W ∪{w∗} ⊆ W ∪{wi}. Obviously, this is not true. Similarly, we can show that
M ′′ 6≤M M ′. That means, both M ′ and M ′′ are in Res(M,µ). This completes
our proof.

Example 3 Suppose T ≡ ¬Ka ∧ ¬Kb ∧ K(a ∨ b) ∧ Kc and the agent
wants to ignore c. Let w0 = {a, b, c}, w1 = {a, c}, w2 = {b, c}, w3 =
{c}, w4 = {a, b}, w5 = {a}, w6 = {b}, w7 = ∅. Clearly, T has three
k-models: M0 = ({w0, w1, w2}, w0), M1 = ({w0, w1, w2}, w1), and M2 =
({w0, w1, w2}, w2). From Proposition 3, T ¦ ¬Kc has the following twelve k-
models: ({w0, w1, w2, wi}, wj), where i = 4, 5, 6, 7 and j = 0, 1, 2.

4.3 Sensing update

Now we consider the case when µ is of the form Kφ∨K¬φ where φ is objective.
Updating T with this type of µ is particularly useful in reasoning about sensing
actions [22,23] where Kφ∨K¬φ represents the effect of a sensing action after
its execution, the agent will know either φ or its negation. We refer to such
an update as a sensing update. The following proposition characterizes the
update of T with a formula of the form Kφ ∨K¬φ. It is interesting to note
that the sufficient and necessary condition for a k-model of T ¦ (Kφ ∨K¬φ)
is similar to the one presented in Proposition 3.

Proposition 5 Given T and µ ≡ Kφ ∨ K¬φ where φ is objective. M ′ =
(W ′, w′) is a k-model of T ¦ (Kφ ∨ K¬φ) if and only if there exists a k-
model M = (W,w) of T such that w = w′ and W ′ = W (w,φ) or w = w′ and
W ′ = W (w,¬φ)

Proof: Let µ ≡ Kφ ∨ K¬φ and M ′ = (W (w,φ), w). From the definition of
W (w,φ), it is easy to see that M ′ |= µ. Consider any M ′′ = (W ′′, w′′) where
M ′′ |= µ and w′′ 6= w. According to the condition 1 of Definition 2, M ′ <M M ′′.
So M ′′ can not be a k-model of T ¦ µ. In other words, each k-model of T ¦ µ
must have a form of M ′′ = (W ′′, w). Then from Theorem 1, to prove the re-
sult, it is sufficient to prove for k-model M ′′ = (W ′′, w) where W ′′ 6= W (w,φ)

or W ′′ 6= W (w,¬φ), M ′ ≤M M ′′. This can be shown in the same way as in the
proof of Proposition 3.

Example 4 Suppose T ≡ Kb ∧ ¬Ka ∧ ¬K¬a represents the current knowl-
edge of an agent. Note that T implies that the agent does not have any knowl-
edge about a. Consider the update of T with µ ≡ Ka ∨ K¬a which can be
thought of as the agent trying to reason – in the planning or plan verifica-
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tion stage – about a sensing action 4 that will give her the knowledge about
a. Let w0 = {a, b}, w1 = {b}, w2 = {a} and w3 = ∅. It is easy to see that
M0 = ({w0, w1}, w0) and M1 = ({w0, w1}, w1) are two k-models of T . Then
according to the above proposition, it is obtained that M ′

0 = ({w0}, w0) and
M ′

1 = ({w1}, w1) are the two k-models of T ¦ µ.

4.4 Forgetting update

As another important type of knowledge update, we consider the update of
T with µ ≡ ¬Kφ ∧ ¬K¬φ. This update can be thought of as the result of
an agent forgetting her knowledge about the fact φ. We will refer to such an
update as a forgetting update. The following proposition shows that in order
to forget φ from T , for each k-model of the current knowledge set, the agent
only needs to expand the set of possible worlds of this model with exactly one
specific world.

Proposition 6 Given T and µ ≡ ¬Kφ ∧ ¬K¬φ where φ is objective. M ′ =
(W ′, w′) is a k-model of T ¦µ if and only if there exists a k-model M = (W,w)
of T such that

(i) if M |= Kφ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= ¬φ;
(ii) if M |= K¬φ, then w′ = w and W ′ = W ∪ {w∗}, where w∗ |= φ;
(iii) otherwise, w′ = w and W ′ = W .

Proof: The proof is similar to the proof of Proposition 4. Let µ ≡ ¬Kφ ∧
¬K¬φ and M = (W,w) be a k-model of T . Then it is easy to see that for two
k-models M ′ = (W ′, w′) and M ′′ = (W ′′, w′′) such that M ′ |= µ and M ′′ |= µ,
and w′ = w and w′′ 6= w, M ′ <M M ′′. So M ′′ can not be a k-model of T ¦ µ.
In other words, a k-model of T ¦ µ must have a form M ′ = (W ′, w).

From Theorem 1, to prove the result, we only need to show that for any
k-model M ′′ = (W ′′, w) such that M ′′ |= µ and W ′′ 6= W ∪ {w∗}, M ′ ≤M M ′′.

Let M ′ = (W ∪ {w∗}, w), where w∗ |= ¬φ if M |= Kφ and w∗ |= φ if
M |= K¬φ. We first prove that for any k-model M ′′ = (W ′′, w) such that
M ′′ |= µ and W ′′ does not have a form of W ∪ {wi}, M ′ ≤M M ′′.

Suppose M |= Kφ. Clearly M ′ |= µ.
Case 1. Consider a k-model M ′′ = (W ′′, w) where W ′ = W ∪ {w∗} ⊂ W ′′.
Note that M ′′ |= µ as well. However, from Proposition 1, we have KM ′′ ⊆
4 Such reasoning is necessary in creating plans with sensing actions or verifying
such plans. On the other hand after the execution of a sensing action the agent
exactly knows either a or ¬a, and can simply use the notion of belief update.
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KM ′ ⊆ KM . So M ′ ≤M M ′′ according to Definition 2 (i.e. condition (b)).
Case 2. Suppose W ′′ ⊂ W ′. Without loss of generality, we assume that W ′′ =
W ∪{w∗} \{wj} where wj ∈ W . This follows that W 6⊂ W ′′ and W ′′ 6⊂ W . So
it is the case that KM \KM ′′ 6= ∅ and KM ′′ \KM 6= ∅. On the other hand,
we have W ⊆ W ′, from Definition 2 (i.e. condition (a)), we have M ′ ≤M M ′′.
Case 3. Now suppose W ′′ 6⊂ W ′ and W ′ 6⊂ W ′. Without loss of generality, we
can assume that W ′′ = W ∪ {w∗, wi} \ {wj}, where wj ∈ W and w∗, wi 6∈ W .
Again, this results to the situation that W 6⊂ W ′′ and W ′′ 6⊂ W . From the
above discussion, it implies that M ′ ≤M M ′′.

Following the same way as above, we can prove that under the condition
that M |= K¬φ and M ′ = (W ∪ {w∗}, w) where w∗ |= φ, for any k-model
M ′′ = (W ′′, w) such that M ′′ |= µ and W ′′ does not have a form of W ∪ {wj}
M ′ ≤M M ′′.

Now we show that for any k-model M ′′ that is of the form M ′′ = (W ∪{wi}, w)
and wi is any world such that wi |= ¬φ if M |= Kφ or wi |= φ if M |= K¬φ,
M ′ 6≤M M ′′ and M ′′ 6≤M M ′. Suppose M ′ ≤M M ′′. Since W ⊂ W ∪ {w∗},
then according to Definition 2, condition (a) or (b) should be satisfied. As
W ⊂ W ∪ {wi}, condition (a) can not be satisfied. So condition (b) must
be satisfied. That is, for any ψ such that M |= Kψ and M ′ 6|= Kψ,
M ′′ |= Kψ. However, this implies that KM \KM ′ ⊆ KM \KM ′′, and also
KM ∩KM ′′ ⊆ KM ∩KM ′. From Proposition 1 (Results 2 and 4), it follows
that W ∪W ′ ⊆ W ∪W ′′, that is, W ∪ {w∗} ⊆ W ∪ {wi}. Obviously, this is
not true. Similarly, we can show that M ′′ 6≤M M ′. That means, both M ′ and
M ′′ are in Res(M,µ). This completes our proof.

Example 5 Suppose T ≡ Kb ∧ (Ka ∨ K¬a) represents the current knowl-
edge of an agent. After executing a forgetting action the agent now would
like to update her knowledge with µ ≡ ¬Ka ∧ ¬K¬a. Let w0 = {a, b}, w1 =
{b}, w2 = {a}, w3 = ∅. It is easy to see that M0 = ({w0}, w0) and M1 =
({w1}, w1) are the two k-models of T . Then using Proposition 6, we conclude
that M ′

0 = ({w0, w1}, w0), M ′
1 = ({w0, w3}, w0), M ′

2 = ({w1, w0}, w1), and
M ′

3 = ({w1, w2}, w1) are the four k-models of T ¦ µ. Note that ({w0, w2}, w0)
cannot be a k-model of T ¦ µ according to Proposition 6.

5 Persistence of knowledge and ignorance

Like most systems that do dynamic modeling, the knowledge update discussed
previously is non-monotonic in the sense that while adding new knowledge into
a knowledge set, some previous knowledge in the set might be lost. However, it
is important to investigate classes of formulas that are persistent with respect
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to an update, as this may partially simplify the underlying inference problem
[26]. Furthermore, characterizing persistence is also an important issue in non-
monotonic epistemic logic reasoning because it plays an essential role in the
way of how different states of agent’s knowledge can be compared [3,10,11].

Given T and µ, a formula α is said to be persistent with respect to the update
of T with µ, if T |= α implies T ¦ µ |= α. If α is of the form Kφ, we call this
persistence as knowledge persistence, while if α is of the form ¬Kφ, we call it
ignorance persistence. The question that we address now is that under what
conditions, a formula α is persistent with respect to the update of T with µ.

As the update of T with µ is achieved based on the update of every k-model
of T with µ, our task reduces to the study of persistence with respect to a
k-model update. This is defined in the following definition.

Definition 5 (Persistence with respect to k-model update) Let µ and
α be two formulas and M be a k-model. α is persistent with respect to the
update of M with µ if for any M ′ ∈ Res(M, µ), M |= α implies M ′ |= α.

Clearly a formula α is persistent with respect to the update of T with µ
if and only if for each k-model M of T , α is persistent with respect to the
update of M with µ. To characterize the persistence property with respect to
k-model updates, we first define a preference ordering on k-models in terms
of a formula.

Definition 6 (Formula closeness) Let µ be a formula and M1 and M2 be
two k-models. We say M1 is as close to µ as M2, denoted as M1 ≤µ M2, if
one of the following conditions holds:

(1) M1 ∈ Mod(µ);
(2) if M1,M2 6∈ Mod(µ), then for any M ∈ Mod(µ), M1 ≤M M2.

We denote M1 <µ M2 if M1 ≤µ M2 and M2 6≤µ M1.

Intuitively, the above definition specifies a partial ordering to measure the
closeness between two k-models to a formula. In particular, if M1 is a k-model
of µ, then M1 is closer to µ than all other k-models (i.e. condition 1). If neither
M1 nor M2 is a k-model of µ, then the comparison between M1 and M2 with
respect to µ is defined based on the k-model preference ordering ≤M for each
k-model M of µ (i.e. condition 2). Note that if both M1 and M2 are k-models
of µ, we have M1 ≤µ M2 and M2 ≤µ M1, and both of them are equally close
to µ.

Example 6 Let µ ≡ Ka∧Kb, w0 = {a, b}, w1 = {b}, w2 = {a} and w3 = ∅.
Clearly, µ has one k-model M = ({w0}, w0). Consider two k-models M1 =
({w0, w1}, w0) and M2 = ({w1, w2}, w1). Now let us compare which one of
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them is closer to µ. Since neither M1 nor M2 is a k-model of µ, we can use
condition 2 in Definition 6 to compare M1 and M2. According to Definition 2,
it is easy to see that M1 ≤M M2 as w0 \ w1 ∪ w1 \ w0 = {a} 6= ∅. Therefore,
we conclude M1 ≤µ M2. Furthermore, we also have M1 <µ M2.

Proposition 7 Let µ be a formula. For any two k-models M1 and M2, if
M1 ≤µ M2, then M2 |= µ implies M1 |= µ.

Proof: Suppose M2 |= µ. Then M2 ∈ Mod(µ). From Definition 6, we know
that for any other k-model M ′, M2 ≤µ M ′. So M2 ≤µ M1. But we have
M1 ≤µ M2. This implies that both M1 and M2 are equally close to µ. Hence,
M1 |= µ.

Given a formula µ and a sequence of k-models M1, · · · ,Mk, if the relation
M1 ≤µ M2 ≤µ · · · ≤µ Mk holds, then it means that Mi is closer to µ than Mj,
where i < j. Now under this condition, if there is another formula α which
satisfies the property that Mj |= α implies Mi |= α whenever i < j, we say
that formula α is persistent with respect to formula µ. In other words, when
k-models move closer to µ, α’s truth value is preserved in these k-models. The
following definition formalizes this idea.

Definition 7 (≤µ-persistence) Let α, µ be two formulas. We say that α is
≤µ-persistent if for any two k-models M1 and M2, M2 |= α and M1 ≤µ M2

implies M1 |= α.

Now we have the following important relationship between ≤µ-persistence and
k-model update persistence.

Theorem 3 Let α and µ be two formulas and M be a k-model. α is persistent
with respect to the update of M with µ if α is ≤µ-persistent.

Proof: Let M ′ be a k-model in Res(M, µ). Then we have M ′ ∈ Mod(µ). So
for any k-model M ′′, we have M ′ ≤µ M ′′. So M ′ ≤µ M . Now suppose α is
µ-persistent. It follows that M |= α implies M ′ |= α. As M ′ is an arbitrary
k-model in Res(M, µ), we can conclude that α is persistent with respect to
the update of M with µ.

From Theorem 2, we have that ≤µ-persistence is a sufficient condition to
guarantee a formula persistence with respect to a k-model update. As will be
shown next, we can provide a unique characterization for µ-persistence. We
first define the notion of ordering preservation as follows.

Definition 8 (Ordering Preservation) Given two formulas α and β. We
say that ordering ≤α preserves ordering ≤β if for any two k-models M1 and
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M2, M1 ≤α M2 implies M1 ≤β M2.

The intuition behind ordering preservation is clear. That is, if ≤α preserves
≤β, then for any two k-models M1 and M2, whenever M1 is closer to α than
M2, M1 will be closer to β than M2 as well. Finally, we have the following
important result to characterize µ-persistence.

Theorem 4 Given two formulas α and µ, α is ≤µ-persistent if and only if
≤µ preserves ≤α.

Proof: (⇒) Suppose α is ≤µ-persistent. That is, for any two k-models M1

and M2, M1 ≤µ M2 and M2 |= α implies M1 |= α. So under the constraint
that α is µ-persistent, whenever M1 ≤µ M2, we have M1 ≤α M2. That means,
≤µ preserves ≤α.

(⇐) Suppose ≤µ preserves ≤α. From Definition 8, we have that for any two
k-models M1 and M2, M1 ≤µ M2 implies M1 ≤α M2. Now suppose M1 ≤µ M2.
So we have M1 ≤α M2. From Proposition 6, we have that M2 |= α implies
M1 |= α. From this it follows that α is ≤µ-persistent.

6 Background on computational complexity

In the rest of this paper, we consider complexity issues of knowledge update. In
particular, we investigate the computational complexity of model checking for
knowledge update. For this purpose, we will restrict the underlying language
to be finite.

We first introduce basic notions from complexity theory and refer to [7] for fur-
ther details. Two important complexity classes are P and NP . The class of P
includes those decision problems solvable by a polynomial-time deterministic
Turing machine. The class of NP , on the other hand, consists of those decision
problems solvable by a polynomial-time nondeterministic Turing machine.

Let C be a class of decision problems. The class P C consists of the problems
solvable by a polynomial-time deterministic Truing machine with an oracle for
a problem from C, while the class NP C includes the problems solvable by a
nondeterministic Turing machine with an oracle for a problem in C. By co-C
we mean the class consisting of the complements of the problems in C.

The classes ΣP
k and ΠP

k of the polynomial hierarchy are defined as follows:

ΣP
0 = ΠP

0 = P , and

ΣP
k = NPΣP

k−1 , ΠP
k =co-ΣP

k for all k > 1.
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It is easy to see that NP = ΣP
1 and co-NP = ΠP

1 . A problem A is complete
for a class C if A ∈ C and for every problem B in C there is a polynomial
transformation of B to A.

The prototypical ΣP
k -complete and ΠP

k -complete problems are deciding the
validity of quantified Boolean formulas (QBFs) of the form:

Q1X1Q2X2 · · ·QkXkE, k ≥ 1, (1)

where E is a Boolean expression using propositional atoms over alphabets
X1, X2, · · ·, and Xk, and the Qi’s are alternating qualifiers from {∀,∃} (1 ≤
i ≤ k). If Q1 = ∃, then deciding the validity of (1) is ΣP

k -complete, while
deciding the validity of (1) is ΠP

k -complete if Q1 = ∀.

Let X and Y be two finite set of propositional atoms where X and Y have
the same cardinality, i.e. |X| = |Y |. For convenience, we use notion X ≡ Y
to stand for formula (x1 ≡ y1) ∧ (x2 ≡ y2) ∧ · · · ∧ (xm ≡ ym). Consequently,
X ≡ ¬Y stands for formula (x1 ≡ ¬y1)∧ (x2 ≡ ¬y2) ∧ · · · ∧ (xm ≡ ¬ym). We
also use ¬X to denote the set {¬xi | xi ∈ X} (or formula

∧
xi∈X ¬xi), and use

notion
∨¬X to stand for formula

∨
xi∈X ¬xi. For a given formula α, we use

|α| to denote the length of α.

The problem of model checking for knowledge update is described as follows:
Given a knowledge set T , a formula µ, and a k-model M , deciding whether
M ∈ Mod(T ¦µ). It is well known that the model checking problem for tradi-
tional belief revision and update is located at the lower end of the polynomial
hierarchy from P to ΣP

2 depending on specific revision/update operators and
additional restrictions (if any) [16].

7 Complexity of model checking: General case

In this section, we investigate the complexity of model checking for the general
case of knowledge update.

Lemma 1 Let M = (w,W ),M1 = (w1,W1) and M2 = (w2,W2) be three
k-models.

(1) Deciding whether KM \KM2 6= ∅ and
KM2 \KM 6= ∅ has time complexity
O(|W | × |W2|).

(2) Deciding whether KM\KM1 ⊆ KM\KM2 has time complexity O(|W1|×
(|W |+ |W2|)).
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(3) Deciding whether KM1\KM ⊆ KM2\KM has time complexity O(|W1|×
|W | × |W2|).

Proof: Result 1 is equivalently to deciding whether W 6⊂ W2 and W2 6⊂ W
(proper set inclusion). Obviously, this can be verified in O(|W | × |W2|) time.

Now we prove Result 2. From set inclusion and intersection properties, it is
easy to see that KM \KM1 ⊆ KM \KM2 iff KM2 ∩KM ⊆ KM1 ∩KM .
Then from Proposition 1 (Results 2 and 4) of [1], it follows that KM2 ∩
KM ⊆ KM1 ∩ KM iff W1 ∪ W ⊆ W2 ∪ W . Obviously, checking whether
W1 ∪W ⊆ W2 ∪W can be done in O(|W1| × (|W |+ |W2|)) time.

Finally we prove Result 3. We first prove the following result:

KM1 6⊆ KM2∪KM if and only if for some w ∈ W and w2 ∈ W2, such that
w1 |= ¬(

∧
w) ∧ ¬(

∧
w2)

5 for all w1 ∈ W1.

Firstly, if for all w1 ∈ W1 we have w1 |= ¬(
∧

w) ∧ ¬(
∧

w2). Then let φ =
¬(

∧
w) ∧ ¬(

∧
w2). Clearly, φ ∈ KM1, but φ 6∈ KM and φ 6∈ KM2. That is,

KM1 6⊆ KM2 ∪KM

Now we suppose KM1 6⊆ KM2 ∪KM . Then there exists some φ ∈ KM1 but
φ 6∈ KM and φ 6∈ KM2. We first show that in this case, φ |= ¬(

∧
w)∧¬(

∧
w2)

for some w ∈ W and w2 ∈ W2 respectively. Since φ 6∈ KM , there exists some
w ∈ W such that w |= ¬φ, and so φ |= ¬(

∧
w). Similarly, from φ 6∈ KM2, there

exists some w2 ∈ W2 such that w2 |= ¬φ. That is φ |= ¬(
∧

w2). Combine these
two cases, we have φ |= ¬(

∧
w)∧¬(

∧
w2). On the other hand, since φ ∈ KM1,

we have that for all w1 ∈ W1, w1 |= φ and then w1 |= ¬(
∧

w) ∧ ¬(
∧

w2).

From the above result, it observed that to decide whether KM1 6⊆ KM2∪KM ,
we only need to check whether there exist some w ∈ W and w2 ∈ W2 such
that for all w1 ∈ W1, w1 |= ¬(

∧
w) ∧ ¬(

∧
w2). Obviously, we need to check at

most |W |× |W2| formulas for each w1 ∈ W1. So all checks can be done in time
O(|W1| × |W | × |W2|).

Lemma 2 Let M,M1 and M2 be three k-models. Deciding whether M1 ≤M

M2 can be achieved in polynomial time.

Proof: According to Definition 2, if w1 6= w2, then M1 ≤M M2 iff (w1 \ w ∪
w \ w1) ⊆ (w2 \ w ∪ w \ w2). Clearly, this can be verified in polynomial time.

5 Note that we use notion
∧

w to denote the conjunction of all propositional atoms
that occur in w. If an atom is not in w, its negation will be in

∧
w. For instance, if

w = {a, c}, then
∧

w = a∧¬b∧c considering that a, b and c are the only propositional
atoms in the language.
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If w1 = w2, then we need to check the following conditions: (i) If W ⊆ W1,
then M1 ≤M M2 iff condition (a) or (b) in Definition 2 is satisfied. From
Lemma 1, we know that deciding whether (a) and (b) to be true can be done
in polynomial time. (ii) If W1 ⊆ W , then M1 ≤M M2 iff condition (a) or (c)
in Definition 2 is satisfied. From Lemma 1, deciding whether (c) to be true is
in P. (iii) If W 6⊂ W1 and W1 6⊂ W , then M1 ≤M M2 iff conditions (b) and
(c) should be satisfied. Again, deciding whether condition (c) to be true is in
polynomial time. So, the problem is in P.

Lemma 3 Let M, M ′ be two k-models and µ a S5 formula. Deciding whether
M ′ ∈ Res(M, µ) is in co-NP.

Proof: According to Theorem 1, if M ′ 6∈ Res(M,µ), there must exist another
k-model M ′′ such that M ′′ <M M ′. A guess of a k-model M ′′ can be done in
polynomial time. From Lemma 2, deciding whether M ′′ ≤M M ′ is in P. Since
M ′′ <M M ′ iff M ′′ ≤M M ′ and M ′ 6≤M M ′′, this follows that checking whether
M ′′ <M M ′ can be decided in polynomial time. So the problem is in co-NP.

Theorem 5 Model checking for knowledge update is in ΣP
2 .

Proof: From Definition 4, M ∈ Mod(T ¦ µ) iff for some M ′ ∈ Mod(T ),
M ∈ Res(M ′, µ). A guess of M ′ and check whether M ′ ∈ Mod(T ), i.e.
M ′ |= T , can be achieved in polynomial time. According to Lemma 3, de-
ciding whether M ∈ Res(M ′, µ) can be solved with one call to a co-NP oracle.
So the problem is in ΣP

2 .

7.1 Knowledge gradual update

To prove the hardness, we consider a special form of knowledge update and
prove its model checking complexity is ΣP

2 -hard.

Given T and µ, we say the update of T with µ is knowledge gradual if for any
k-model M ′ = (W ′, w′) of T ¦µ, there exists a k-model M = (W,w) of T such
that either W ⊆ W ′ or W ′ ⊂ W . Note that, after performing a knowledge
gradual update, the agent’s knowledge may be decreased or increased (or
without change), and the agent’s actual world may be changed as well.

Example 7 Let T = a ∧ ¬Ka and µ = K¬a. Obviously, T has a unique
k-model M = ({{a}, ∅}, {a}). Then updating M with µ generates a unique
k-model of T ¦ µ: M ′ = ({∅}, ∅). Obviously, M ′ has increased knowledge from
M and the actual world of M ′ is also different from M ’s.
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Lemma 4 Let X, Y, X̂, Ŷ be sets of propositional atoms and a be a proposi-
tional atom, where |X| = |X̂|, |Y | = |Ŷ | and any two sets of X,Y, X̂, Ŷ and
{a} are disjoint. Suppose φ is an objective formula formed based on X ∪ Y .
Let T and µ be the following two S5 formulas respectively:

T = γ1 ∨ γ2, where
γ1 = (X ≡ X̂) ≡ φ ≡ a ∧ (Y ∧ ¬Ŷ )∧

¬K¬(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ),
γ2 = ((X ∧ ¬X̂) ≡ ¬φ ≡ ¬a) ∧ Ŷ , and
µ = K(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ )∨

K(¬a ∧X ∧ ¬X̂ ∧ (
∨¬Y ) ∧ Ŷ )∨

K(¬a ∧X ∧ ¬X̂∧ Y ∧ Ŷ ) 6 .

Then T ¦ µ is knowledge gradual.

Proof: To prove T ¦µ to be knowledge gradual, we need to show that for any
k-model M = (W,w) ∈ Mod(T ), if M ′ = (W ′, w′) ∈ Res(M,µ), then either
W ⊆ W ′ or W ′ ⊆ W . From the construction of T , it is easy to see that if
M ∈ Mod(T ), then either M |= γ1 or M |= γ2, but M 6|= γ1 ∧ γ2. Based on
this observation, our proof consists of two cases.

Case 1. Let M = (W,w) ∈ Mod(γ1). Since M |= γ1, we have

w = X1 ∪ X̂1 ∪ Y ∪ {a}, where X1 ∪ Y |= φ for some X1 ⊆ X.

Furthermore, since M |= ¬K¬(a ∧ X ∧ ¬X̂ ∧ Y ∧ Ŷ ), there exists a world
w∗ ∈ W such that

w∗ = X ∪ Y ∪ Ŷ ∪ {a}.

Now we specify a k-model of µ as follows:

M∗ = ({w∗}, w∗).

It is easy to see that M∗ |= K(a∧X∧¬X̂∧Y ∧ Ŷ ). So M∗ |= µ. Furthermore,
M∗ is the unique k-model of K(a ∧ X ∧ ¬X̂ ∧ Y ∧ Ŷ ). We prove M∗ is the
unique k-model in Res(M,µ).

Note Diff(w, w∗) = (X \X1) ∪ X̂1 ∪ Ŷ . Besides M∗, µ has other two types
of k-models:

M1 = (W1, w1), where w1 = X ∪ Y1 ∪ Ŷ , where Y1 ⊂ Y (Y1 6= Y ), and
M2 = (W2, w2), where w2 = X ∪ Y ∪ Ŷ .

Note that

6 Recall that
∨¬Y =

∨
yi∈Y ¬yi.
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M1 |= K(¬a ∧X ∧ ¬X̂ ∧(
∨¬Y ) ∧ Ŷ ), and

M2 |= K(¬a ∧X ∧ ¬X̂∧ Y ∧ Ŷ ).

Consider

Diff(w, w1) = (X \X1) ∪ X̂1∪ (Y \ Y1) ∪ Ŷ ∪ {a},
Diff(w, w2) = (X \X1) ∪ X̂1 ∪ Ŷ ∪ {a}.

Clearly, we have

Diff(w, w∗) ⊂ Diff(w, w1), and
Diff(w, w∗) ⊂ Diff(w, w1).

So Res(M, µ) = {M∗}. Also observe that
M∗ = ({w∗}, w∗), {w∗} ⊂ W .

Case 2. Let M = (W,w) ∈ Mod(γ2). We have

w = X ∪ Y1 ∪ Ŷ , where X ∪ Y1 |= ¬φ for some Y1 ⊆ Y .

If Y1 6= Y , then we have

w |= ¬a ∧X ∧ ¬X̂ ∧ (
∨¬Y ) ∧ Ŷ ),

this implies that there exists a subset W1 of W where for each wi ∈ W1,

wi |= (¬a ∧X ∧ ¬X̂ ∧ (
∨¬Y ) ∧ Ŷ ).

By specifying W1 to be the maximal such subset of W , it is easy to note that
M1 = (W1, w) is a k-model in Res(M, µ).

On the other hand, if Y1 = Y , then we have

w |= (¬a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ),

this implies that there exists a subset W2 of W where for each wi ∈ W2,

wi |= (¬a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ).

Similarly, by specifying W2 to be the maximal such subset of W , it is easy to
note that M2 = (W2, w) is a k-model in Res(M, µ).

Since in both cases, we have W1 ⊆ W and W2 ⊆ W , this follows that for any
k-model M of T where M |= γ2, every resulting k-model after updating M
with µ only increases the knowledge from M .
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Theorem 6 Model checking for knowledge update is ΣP
2 -complete. The hard-

ness holds even if the update is knowledge gradual.

Proof: We only need to prove the hardness part. This part is based on a vari-
ation of the proof of Lemma 10. We prove the hardness by giving a polynomial
transformation from deciding the validity of ∃X∀Y E, where E is a Boolean
expression using propositional atoms over X ∪ Y . We construct T , µ and a
k-model M∗ over propositional atoms X ∪ Y ∪ X̂ ∪ Ŷ ∪ {a}, where |X̂| = |X|
and |Ŷ | = |Y |, and any two sets among X,Y, X̂, Ŷ and {a} are disjoint.

T = γ1 ∨ γ2, where
γ1 = (X ≡ X̂) ≡ E ≡ a ∧ (Y ∧ ¬Ŷ )∧

¬K¬(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ),
γ2 = ((X ∧ ¬X̂) ≡ ¬E ≡ ¬a) ∧ Ŷ ,
µ = K(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ )∨

K(¬a ∧X ∧ ¬X̂ ∧ (
∨¬Y ) ∧ Ŷ )∨

K(¬a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ),
M∗ = (W ∗, w∗), where
W ∗ = {w∗}, w∗ = X ∪ Y ∪ Ŷ ∪ {a}.

Note that

M∗ |= K(a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ).

So M∗ is a k-model of µ. Furthermore, it is the unique k-model of K(a∧X ∧
¬X̂ ∧Y ∧ Ŷ ). From Lemma 10, we know that T ¦µ is knowledge gradual. Now
we will show that M∗ is a k-model of T ¦ µ if and only if ∃X∀Y E is valid.

(⇒) Suppose ∃X∀Y E is valid. Then for some X1 ⊆ X, X1 ∪ Y |= E. We
specify a k-model of γ1 as follows:

M = (W,w), where w = X1 ∪ X̂1 ∪ Y ∪ {a}.

Since M |= ¬K¬(a∧X ∧¬X̂ ∧ Y ∧ Ŷ ), it is clear that the world w∗ must be
in W , i.e. w∗ ∈ W . With the same justification as described in the proof of
Lemma 10, we conclude that M∗ is a k-model of updating M with µ.

(⇐) Suppose ∃X∀Y E is not valid. That is, ∀X∃Y ¬E is valid. Then X ∪Y1 |=
¬E for some Y1 ⊆ Y . In this case, T has the following type of k-models:

M = (W,w), where w = X ∪ Y1 ∪ Ŷ .

Note that w |= ((X ∧ ¬X̂ ≡ ¬E ≡ ¬a) ∧ Ŷ ). That is, M is a k-model of γ2.

If Y1 6= Y , then we have

w |= (¬a ∧X ∧ ¬X̂ ∧(
∨¬Y ) ∧ Ŷ ).
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We now specify a k-model of µ as follows: M1 = (W1, w1), where w1 = w and
W1 is the maximal subset of W such that for each wi ∈ W1,

wi |= (¬a ∧X ∧ ¬X̂ ∧ (
∨¬Y ) ∧ Ŷ ).

Since

Diff(w, w∗) = (X \X1) ∪ X̂1 ∪ Ŷ , and
Diff(w, w1) = ∅ ⊂ Diff(w,w∗),

M∗ is not a k-model in Res(M, µ).

If Y1 = Y , then we have

w |= (¬a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ).

Again, we can specify a k-model of µ as follows: M2 = (W2, w2), where w2 = w
and W2 is maximal subset of W such that for each wi ∈ W2,

wi |= (¬a ∧X ∧ ¬X̂ ∧ Y ∧ Ŷ ).

Since Diff(w,w2) = ∅ ⊂ Diff(w, w∗), M∗ is not a k-model in Res(M,µ) in
this case either.

Finally, suppose for some X1 ⊆ X and Y1 ⊆ Y , E is evaluated to be true on
X1∪Y1, i.e. X1∪Y1 |= E. Without loss of generality, we can assume Y1 6= Y 7 .
This implies that γ1 does not have a k-model under this situation. Therefore,
if ∃X∀Y E is not valid, all k-models of T must be k-models of γ2.

8 A tractable subclass - knowledge decreased update

In this section, we identify a subclass of knowledge update problems for which
model checking can be achieved in polynomial time. We first introduce a useful
notation. Let α be a S5 formula and φα be an objective formula (i.e. no K
occurs in it) occurring in α. We then say φα is an objective sub-formula of α.
We denote the set of all objective sub-formulas of α as Subo(α). For instance,
given α = Ka ∨K¬b, Subo(α) = {a, b,¬b}.

7 Note that this assumption is always feasible. For instance, if X1 ∪ Y |= E, we
can expand Y to be Y ′ by adding a new atom y′ into Y to make Y 6= Y ′, i.e.
Y ′ = Y ∪ {y′}, and modify E to be E′ = E ∧ ¬y′ such that X1 ∪ Y |= E′ but
X1 ∪ Y ′ 6|= E′.
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Definition 9 Given S5 formulas T and µ, updating T with µ is called knowl-
edge decreased if for any k-model M ′ = (W ′, w′) of T ¦ µ, there exists a
k-model M = (W,w) of T such that (i) W ⊆ W ′ and w = w′; and (ii) for any
w∗ ∈ W ′, w∗ ∈ W iff either w∗ |= φµ or w∗ |= ¬φµ for some φµ in Subo(µ).

From the above definition, it is easy to see that if an update is knowledge
decreased, then the actual world of the agent’s state will not change, and
the agent’s knowledge can only be decreased. Furthermore, the set of posible
worlds in the agent’s resulting state can be specifically computed from her
previous state. We have the following important result on the model checking
for knowledge decreased update.

Theorem 7 Model checking for knowledge decreased update can be achieved
in polynomial time.

Proof: Given T , µ and a k-mode M ′ = (W ′, w′). Suppose T ¦µ be knowledge
decreased. To check whether M ′ ∈ Mod(T ¦ µ), we need to do the following
things:

(1) Check whether M ′ |= µ,
(2) Compute a subset W of W ′ such that for any w∗ ∈ W ′, w∗ ∈ W iff

w∗ |= φµ or w∗ |= ¬φµ for some φµ ∈ Subo(µ),
(3) Check whether (W,w) |= T .

Clearly, Steps 1 and 3 can be done in polynomial time. As |Subo(µ)| ≤ |µ|, it
follows that Step 2 can be also done in polynomial time.

It is worthwhile to mention some concrete forms of knowledge decreased up-
date which, as we have presented earlier, have important applications in prac-
tical domains.

Theorem 8 Ignorance and forgetting updates are knowledge decreased.

Proof: The proof directly follows from Propositions 4 and 6 respectively.

Corollary 1 Model checking for ignorance and forgetting updates can be
achieved in polynomial time.

9 An intractable subclass - Knowledge increased update

In this section, we address another subclass of knowledge update problems
whose model checking complexity are intractable but lower than the general
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case. Such investigation will be useful for us to design more optimal model
checking algorithms for these subclasses of update problems.

As a contrary case to the knowledge decreased update, the knowledge increased
update is defined as follows.

Definition 10 Given T and µ, updating T with µ is called knowledge in-
creased if for any k-model M ′ = (W ′, w′) of T ¦ µ, there exists a k-model
M = (W,w) of T such that (i) W ′ ⊂ W , and w = w′; and (ii) for any
w∗ ∈ W , w∗ ∈ W ′ iff either w∗ |= φµ or w∗ |= ¬φµ for some φµ in Subo(µ).

It is clear that if a knowledge increased update is performed to an agent’s
knowledge set, it only increases the agent’s knowledge and does not change the
agent’s actual world. Unfortunately, different from the knowledge decreased
update, the model checking problem for knowledge increased update is not
tractable.

Theorem 9 Model checking for knowledge increased update is NP-complete.

Proof: Membership proof. Given T , µ and M ′ = (W ′, w′). To deciding
whether M ′ ∈ Mod(T ¦µ), we only need to show that for some M ∈ Mod(T ),
M ′ ∈ Res(M, µ). A guess of M = (W,w) and verifying M |= T can be done in
polynomial time. Since T¦µ is knowledge increased, to decide M ′ ∈ Res(M, µ),
we only need to check: (1) w = w′, and (2) for any w∗ ∈ W , w∗ ∈ W ′ iff
w∗ |= φµ or w∗ |= ¬φµ for some φµ ∈ Subo(µ). Obviously, both (1) and (2)
can be checked in polynomial time. So the problem is in NP.

Hardness proof. The hardness is proved by transforming the NP-complete
SAT problem to a gaining knowledge update that has been showed to be
knowledge increased. Let E be a CNF on the set of propositional atoms X.
We construct formulas T , µ and a k-model M ′ over two disjoint sets X and
X̂ where |X| = |X̂|.

T = (X ≡ X̂) ∧ ¬K(X ≡ X̂),
µ ≡ K(X ≡ X̂ ∨ ¬E), and
M ′ = (W ′, w′), where
W ′ = {w′}, w′ = X ∪ X̂.

Clearly, M |= µ. We will show that E is satisfiable iff M ′ ∈ Mod(T ¦ µ). Note
that since T |= X ≡ X̂ ∨ ¬E and µ = K(X ≡ X̂ ∨ ¬E), T ¦ µ is a gaining
knowledge update that is knowledge increased according to Theorem 6.

(⇒) Suppose E is satisfiable. Let X1 ⊆ X such that X1 |= E. We specify a
k-model as follows:

M∗ = (W ∗, w∗),
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W ∗ = {w∗, w′′},
w∗ = w′ = X ∪ X̂, and
w′′ = X1 ∪ X̂1, where X̂1 = {x̂i | x̂i ∈ X̂ and xi 6∈ X1}.

Since w′′ 6|= X ≡ X̂, it is easy to see that M∗ |= ¬K(X ≡ X̂). Therefore, M∗

is a k-model of T . On the other hand, since w′′ |= E and w′′ 6|= X ≡ X̂, it
follows that W ′ = {w′} = {w∗} = W ∗(w∗,φ), where φ = (X ≡ X̂) ∨ ¬E. From
Lemma 6, M ′ ∈ Res(M∗, µ), so M ′ ∈ Mod(T ¦ µ).

(⇐) Now suppose E is not satisfiable. That is, for any X1 ⊆ X, X1 |= ¬E.
Then from Lemma 6, for any k-model of T of the form M = (W,w),
where w 6= w′, M ′ 6∈ Res(M,µ). We consider k-models of T of the form
M = (W,w) where w = w′ (note w′ ∈ W ). Without loss of generality, we
assume that there is one world w∗ ∈ W such that w∗ 6|= X ≡ X̂, otherwise
M |= K(X ≡ X̂) and M cannot be a k-model of T . On the other hand, since
E is not satisfiable, ¬E must be true in each world in W . So M |= K¬E
and hence M |= K(X ≡ X̂ ∨ ¬E). This implies that W ′ 6= W (w,φ), where
φ = (X ≡ X̂) ∨ ¬E. So M ′ is not a k-model of T ¦ µ.

It is interesting to note that some specific forms of knowledge update we
discussed earlier are knowledge increased.

Theorem 10 Gaining knowledge and sensing updates are knowledge in-
creased.

Proof: The proof directly follows from Propositions 3 and 5 respectively.

Corollary 2 Model checking for gaining knowledge and sensing updates are
NP-complete.

10 Concluding Remarks

While research on reasoning about knowledge has made significant progress
in the last decade, e.g. [4,8,14,17,21], the problem of modeling the dynam-
ics of knowledge has only received attention in recent years and mainly been
motivated from the study of belief revision and update. Van der Meyden re-
cently studied the computational aspect of knowledge modeling in distributed
systems [19] where the issue of knowledge update was discussed. Although
van der Meyden showed that his knowledge update presented a generaliza-
tion of certain aspects of standard knowledge base update, he did not explore
knowledge update from a more semantical perspective because the notion of

28



knowledge update was only used for the purpose of efficiently implementing
model checking. On the other hand, the dynamic semantics for epistemic logic
was considered by Groeneveld recently. In [6], updates on Kripke models were
specified. In that update semantics, an update is defined as eliminative or con-
scious and knowledge is represented in a many-order setting under the possible
worlds semantics. Under the eliminative update notion, an agent changes her
knowledge minimally according to the new knowledge, while under the con-
scious update notion, an agent not only changes her knowledge by combining
the new knowledge into the state, but also reflects the new knowledge at
a higher-order level. While Groeneveld’s work provides an initial account of
knowledge update, it, however, did not examine its minimal change charac-
terization in detail and its relationship to the traditional belief update (i.e.
Whether Katsuno and Mendelzon’s update postulates were satisfied). Further-
more, its other semantic and computational properties also remain unclear.

In this paper we developed an explicit notion of knowledge update as an
analogous notion to belief update and illustrated its usefulness in character-
izing the knowledge change of an agent in presence of new knowledge. In our
formulation, knowledge update is particularly relevant in reasoning about ac-
tions and plan verifications when there are sensing or forgetting actions. We
presented simpler alternative characterization of knowledge update for par-
ticular cases, and showed its equivalence to the original characterization. We
discussed when particular knowledge (or ignorance) persists with respect to
a knowledge update. We also undertook a further study about the complex-
ity issue of knowledge update. In particular, we analyzed the complexity of
model checking for knowledge update in the general case and in special cases.
We identify special subcases where the model checking is either tractable or
its complexity is lower than the general case. We expect that these results
would be useful for designing more optimal model checking algorithms in the
implementation of knowledge update.

We believe our work here to be a starting point on knowledge update, and as
evident from the research in belief update and revision in the past decade. A
lot remains to be done in knowledge update. For example, issues such as mul-
tiagent knowledge update, iterative knowledge update, abductive knowledge
update, minimal knowledge in knowledge update, etc. remain to be explored.
Similarly, in regards to reasoning about actions, additional specific cases of
knowledge update need to be identified and simpler alternative characteriza-
tion for them will be needed to be developed.
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