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Abstract
Pearl’s probabilistic causal model has been used in
many domains to reason about causality. Pearl’s
treatment of actions is very different from the way
actions are represented (explicitly) and their impact
is reasoned in most other papers in the literature.
In this paper we show how to encode Pearl’s prob-
abilistic causal model in the action language PAL
thus relating this two distinct approaches to reason
about actions.

1 Introduction and motivation
Normally an action when executed in a world changes the
state of the world. Reasoning about actions is important
in several ‘intelligent’ tasks such as planning, hypotheti-
cal reasoning, control generation and verification (for dy-
namical systems), and diagnosis. Often the effect of an
action on the world is not deterministic but rather has an
uncertainty associated with it. In recent years there have
been several proposals (for example,[Pearl, 1999; 2000;
Baral et al., 2002; Boutilier and Goldszmidt, 1996; Reiter,
2001; Littman, 1997]) to represent and reason with such ac-
tions. In all these proposals, except in[Pearl, 1999; 2000;
1995], actions have explicit names and their effects on the
world are described by various means. In[Pearl, 1999;
2000] the dynamics of the world is described through rela-
tionships between fluents or variables (which denote proper-
ties of objects in the world) that are expressed through func-
tional relationships between them. In addition probabilities
are associated with a set of fluents referred to as exogenous
(or unknown) variables. Together they are referred to asprob-
abilistic causal models. The effect of actions are then formu-
lated as “local surgery”on these models.
In this paper our goal is to study the relationship between rea-
soning about actions in probabilistic causal models and sim-
ilar reasoning in the action description language PAL[Baral
et al., 2002] as a representative of the approaches where ac-
tions are named and have effects associated with it. The
motivation behind studying this relationship is to objectively
compare the expressiveness of these two formalisms vis-a-
vis each other. We pickprobabilistic causal modelsas it is
the most recent representative of its class and the award win-
ning book[Pearl, 2000] is based on it. We pick PAL as a

representative of the high level action description languages
[Gelfond and Lifschitz, 1993; McCain and Turner, 1995;
Gelfond and Lifschitz, 1998] as among the action theories
where actions have distinct names, this is the most similar
to probabilistic causal modelsin the way it handles uncer-
tainty. Also, most other action formalisms that incorporate
uncertainty are limited in the sense that they are solely geared
towards planning.
The rest of this paper is organized as follows. In Section 2
we give a brief overview of PAL. In Section 3 we give a brief
overview of probabilistic causal models (PCM). We then (in
Section 4) present an encoding of PCM in PAL. We then state
and prove a result that shows the equivalence of various rea-
sonings in PCM and the corresponding reasonings in the en-
coded PAL. We illustrate the encoding and the logic behind
the proof through an example. Finally, we conclude and dis-
cuss some implications of this result and future works in Sec-
tion 6.

2 The Language PAL: a brief overview
The alphabet of the language PAL consists of four non-empty
disjoint sets of symbolsF, UI , UN andA. They are called the
set of fluents, the set ofinertial unknown variables, the set
of non-inertialunknown variables and the set of actions. The
unknown variables are assumed to be independent of each
other. A fluent literal is a fluent or a fluent preceded by¬.
An unknown variable literal is an unknown variable or an un-
known variable preceded by¬. A literal is either a fluent
literal or an unknown variable literal. Aformula is a proposi-
tional formula constructed from literals.
A state s is an interpretation of fluents and unknown vari-
ables that satisfy certain conditions (to be mentioned while
discussing semantics); For a states, the sub-interpretations of
s restricted to fluents, inertial unknown variables, and non-
inertial unknown variables are denoted bysF , sI , andsN re-
spectively. PAL has four components: a domain description
languagePALD, a languagePALP to express unconditional
probabilities about the unknown variables, a languagePALO

to specify observations, and a query language.

2.1 PALD: The domain description language
A domain descriptionis a collection of propositions of the
following forms:



a causes ψ if ϕ (2.1)

θ causes ψ (2.2)

impossible a if ϕ (2.3)
wherea is an action,ψ is afluentformula,θ is a formula of
fluents andinertial unknown variables, andϕ is a formula of
fluents andunknownvariables.
Propositions of the form (2.1) describe the direct effects of
actions on the world and are calleddynamic causal laws.
Propositions of the form (2.2), calledstatic causal laws, de-
scribe causal relation between fluents and unknown variables
in a world. Propositions of the form (2.3), calledexecutability
conditions, state when actions are not executable.
Semantics: Characterizing the transition function: LetD
be a domain description in the language ofPALD. An inter-
pretation I of the fluents and unknown variables inPALD

is a maximal consistent set of literals ofPALD. A literal l is
said to be true (resp. false) inI iff l ∈ I (resp.¬l ∈ I). The
truth value of a formula inI is defined recursively over the
propositional connective in the usual way. For example,f ∧q
is true inI iff f is true inI andq is true inI. The formulaψ
is said to hold inI (or I satisfiesψ), denoted byI |= ψ, if ψ
is true inI.
A set of formulas fromPALD is logically closedif it is
closed under propositional logic (w.r.t.PALD).
Let V be a set of formulas andK be a set of static causal laws
of the formθ causesψ. V is said to be closed underK if for
every ruleθ causes ψ in K, if θ belongs toV then so does
ψ. CnK(V ) denotes the least logically closed set of formulas
from PALD that containsV and is also closed underK.
A states of D is an interpretation that is closed under the set
of static causal laws ofD.
An action a is prohibited (not executable)in a states if
there exists inD an executability condition of the form
impossible a if ϕ such thatϕ holds ins.
The effect of an action ain a states is the set of formulas
Ea(s) = {ψ | D contains a lawa causes ψ if ϕ and ϕ
holds ins}.
Let S be the set of the states ofD. A transition function
Φ is a function fromA × S to 2S . If a is not prohibited
(i.e.,executable) ins, then
Φ(a, s) = { s′ | s′F,I = CnR((sF,I ∩ s′F,I)∪Ea(s)) }; (2.4)

If a is prohibited (i.e., not executable) ins, thenΦ(a, s) is ∅.
Every domain descriptionD in a languagePALD has a
unique transition functionΦ.

An extended transition function̂Φ expresses the state transi-
tion due to a sequence of actions.

Definition 1 Φ̂([a], s) = Φ(a, s);
Φ̂([a1, . . . , an], s) =

⋃
s′∈Φ̂(a1,s) Φ̂([a2, . . . , an], s′) 2

Definition 2 Given a domain descriptionD, and a states,
s |=D ϕ after a1, . . . , an,
if ϕ is true in all states inΦ([a1, . . . , an], s).
(Often when it is clear from the context|= is written instead
of |=D.) 2

2.2 PALP : Probabilities of unknown variables
A probability descriptionP of the unknown variables is a col-
lection of propositions of the following form:

probability of u is p (2.5)
whereu is an unknown variable, andp ∈ [0, 1].
Semantics: Each proposition above directly gives us the
probability distribution of the corresponding unknown vari-
able as:P (u) = p.
For any states, su denotes the interpretation of the unknown
variables ofs, that is,su = sI ∪ sN . The unconditional prob-
ability of the various states is defined as:

P (s) =
P (su)

|{s′|s′u = su)}| (2.6)

2.3 PALQ: The Query language
A query is of the form:

probability of [ϕ after a1, . . . , an] is p (2.7)
whereϕ is a formula of fluents and unknown variables,ai’s
are actions, andp ∈ [0, 1].
Semantics – Entailment of Queries inPALQ: The entail-
ment is defined in several steps. First the transitional proba-
bility between states due to a single action is defined as fol-
lows.

P[a](s′|s) = Pa(s′|s) =

{
2|UN |
|Φ(a,s)|P (s′N ) if s′ ∈ Φ(a, s)
0, otherwise.

The (probabilistic) correctness of a single action plan given
that we are in a particular states is defined as follows.

P (ϕ after a|s) =
∑

s′∈Φ(a,s)∧s′|=ϕ

Pa(s′|s)

Next the transitional probability due to a sequence of actions,
is recursively defined starting with the base case.

P[ ](s′|s) = 1 if s = s′; otherwise it is0.

P[a1,...an](s′|s) =
∑

s′′
P[a1,...,an−1](s

′′|s)Pan(s′|s′′)

Finally, the (probabilistic) correctness of a (multi-action) plan
given that we are in a particular states is defined as follows.

P (ϕ after α|s) =
∑

s′∈Φ̂([α],s)∧s′|=ϕ

P[α](s′|s) (2.8)

2.4 PALO: The observation language
An observation descriptionO is a collection of proposition of
the following form:ψ obs after a1, . . . , an,
whereψ is a fluent formula, andai’s are actions. When,
n = 0, it is simply written asinitially ψ. The probability
P (ϕ obs after α|s) is computed by the right hand side of
(2.8).
Semantics – assimilating observations inPALO: Using
the Bayes’ rule, the conditional probability of a state given
some observations is given as follows.

P (si|O) =

{
P (O|si)P (si)∑
sj

P (O|sj)P (sj)
if

∑
sj

P (O|sj)P (sj) 6= 0

0, otherwise.



2.5 Queries with observation assimilation
The (probabilistic) correctness of a (multi-action) plan given
only some observations is defined by:

P (ϕ after α|O) =
∑

s

P (s|O)× P (ϕ after α|s) (2.9)

A PAL action theory consists of a domain description, a
probability description of the unknown variables, and an ob-
servation description. Using the above formula, the entail-
ment from an action theory to queries is defined as follows:

Definition 3 D ∪ P ∪ O |=A

probability of [ϕ after a1, . . . , an] is p iff
P (ϕ after a1, . . . , an|O) = p 2

(Often we write the entailment in the shorter form asD∪P ∪
O |=A P (ϕ after a1, . . . , an|O) = p).

3 Probabilistic causal models (PCMs)
Definition 4 [Pearl, 2000]

A causal modelis a tripleM = 〈U, V, F 〉 where:

(i) U is a set ofbackgroundvariables, (also calledexoge-
nous), that are determined by factors outside the model.

(ii) V is a set{V1, V2, . . . Vn} of variables, calledendoge-
nous, that are determined by variables in the model -
that is, variables inU ∪ V ; and

(iii) F is a set of functions{f1, f2, . . . fn} such that eachfi

is a mapping from (the respective domains of)U ∪ (V \
Vi) to Vi and such that the entire setF forms a mapping
from U to V . In other words, eachfi tells us the value of
Vi given the values of all other variables inU∪V , and the
entire setF has a unique solutionV (u). Symbolically,
the set of equationsF can be represented by writing

vi = fi(pai, ui) i = 1, . . . , n

wherepai is any realization of the unique minimal set of
variablesPAi in V \Vi (connotingparents) sufficient for
representingfi. Likewise,Ui ⊆ U stands for the unique
minimal set of variables inU sufficient for representing
fi.

Definition 5 [Pearl, 2000]

Let M be a causal model,X be a set of variables inV , and
x be a particular realization ofX. A submodelMx of M is
the causal modelMx = 〈U, V, Fx〉 whereFx = {fi : Vi 6∈
X} ∪ {X = x}. 2

Submodels are useful for representing the effect of local ac-
tions and hypothetical changes.Mx represents the model that
results from a minimal change to makeX = x hold true un-
der anyu.

Definition 6 [Pearl, 2000]

A probabilistic causalmodel (PCM) is a pair〈M,P (u)〉
whereM is a causal model andP (u) is a probability function
defined over the domain ofU . 2

Because the set of functional equations forms a mapping
from U to V , the probability distributionP (u) also deter-
mines a probability distribution over the endogenous vari-
ables. Hence, given any subsetsX and E of U ∪ V , the
conditional probabilityP (X = x|E = e) is well-defined by
〈M,P (u)〉.
Definition 7 (Probabilistic queries and their entailment in
PCM )

(i) Given a probabilistic causal modelM = 〈M, P (u)〉, the
probability ofx given an observatione is the conditional
probability P (x|e). If P (x|e) = p, we writeM |=C

P (x|e) = p.

(ii) Given a probabilistic causal modelM = 〈M, P (u)〉, the
probability ofx given an interventiondo(y), denoted by
P (x|do(y)), is the probability ofx computed w.r.t the
submodelM = 〈My, P (u)〉. If P (x|do(y)) = p, we
writeM |=C P (x|do(y)) = p.

(iii) Given a probabilistic causal modelM = 〈M, P (u)〉,
the probability ofx given observatione and interven-
tion do(y), denoted byP (x|e, do(y)), is the probability
P (x|do(y)) that is computed w.r.t the modified causal
modelM′ = 〈My, P (u|e)〉, whereP (u|e) is computed
w.r.t the modelM. If P (x|e, do(y)) = p we write
M |=C P (x|e, do(y)) = p. 2

From the above definition it follows that〈M,P (u)〉 |=C

P (x|do(y)) = p iff 〈My, P (u)〉 |=C P (x) = p; and
〈M,P (u)〉 |=C P (x|e, do(y)) iff 〈My, P (u|e)〉 |=C P (x) =
p.

4 EncodingPCM by PAL action theories
In this section we give an encoding of PCM in PAL, illustrate
the encoding with an example, and show the correspondence
between query entailment in PCM and query entailment of
the corresponding encoding in PAL.

Definition 8 Given a PCMM = 〈M,P (u)〉 and assuming
that the functionsfi(pai, Ui) in M are logical functions, we
construct a PAL action theoryD(M) as follows:

• There are no non-inertial unknown variables.

• The inertial unknown variables are the exogenous vari-
ables inM with the same probability distributions:

probability of u is P (u), for every unknown variableu.

• The endogenous variables inM are fluents inD(M).
Moreover, for every fluentvi, there is an additional flu-
entab(vi) in D(M).

• For each functional equation of the formvi =
fi(pai, Ui) in M the following static causal rule is in
D(M): ¬ab(vi) causesvi ⇔ fi(pai, Ui).

• For every fluentvi, D(M) has actions ’make(vi)’,
’make(¬vi)’ with the following effects:

make(vi) causes{ab(vi), vi}
make(¬vi) causes{ab(vi),¬vi}. 2



We now consider thefiring squad example from[Pearl,
1999], and show its encoding in PAL. (In the following sec-
tions, we denote the indicator function byχ, that is,χ(X) =
1 if X is true andχ(X) = 0 if X is false.)

Example 1 The probabilistic causal model of the firing
squad example has two exogenous variablesU , andW and
endogenous variablesA,B, C, andD. These variables stand
for the following propositions:

U = court orders the execution;

C = captain gives a signal;

A = rifle A shoots;

B = rifle B shoots;

D = the prisoner dies;

W = rifle A pulls the trigger out of nervousness.

The causal relationships between the variables are described
by the following functional equations:
C = U ; A = C ∨W ; B = C; D = A ∨B.
In [Pearl, 1999] the goal is to compute the probability
P (¬D|D, do(¬A)), which expresses the probability that the
prisoner would be alive ifA had not shot, given that the pris-
oner is in fact dead. There it is shown that:

P (u,w|D) =
{

P (u,w)
1−(1−p)(1−q) if u = U or w = W,

0 if u = ¬U andw = ¬W.

P (¬D|D, do(¬A)) = q(1−p)
1−(1−p)(1−q)

(4.10)
We now constructPAL encoding of the above. The action
theory contains inertial unknown variablesU and W , flu-
entsA,B,C, D, ab(A), ab(B), ab(C), and ab(D). Trans-
lated intoPAL, the functional equations become the follow-
ing static causal laws:

¬ab(C) causes C ⇔ U
¬ab(A) causes A ⇔ C ∨W
¬ab(B) causes B ⇔ C
¬ab(D) causes D ⇔ A ∨B

(4.11)

We now relate the probabilities computed with respect to the
PCM of the above example with its PAL encoding.

Proposition 1 Let M = 〈M, P (u)〉 be the PCM of firing
squad example given above, and let us denote its encoding in
PAL byD(M). Let init¬ab = {initially ¬ab(A)∧¬ab(B)∧
¬ab(C) ∧ ¬ab(D)}. For anyu andw literals ofU andW :

P (initially {u, w}|init¬ab, initially D)

=
{

P (u,w)
1−(1−p)(1−q) if u = U or w = W,

0 if u = ¬U andw = ¬W.
(4.12)

P (¬D after make(¬A)|init¬ab, initially D)

=
q(1− p)

1− (1− p)(1− q)
(4.13)

Proof (sketch):
We first evaluateP (initially {u,w}|init¬ab, initially D).
For that we use the Bayes’ rule:

P (initially {u,w}|init¬ab, initially D)

=
P (initially {u,w}, initially D|init¬ab)

P (initially D|init¬ab)
(4.14)

Because of the static causal laws (4.11), giveninit¬ab, the
variablesU,W and the fluentsA, B,C, D in the initial state
satisfy:

C ⇔ U, A ⇔ C ∨W,
B ⇔ C, and D ⇔ A ∨B

(4.15)

It follows from (4.15) that¬D ⇔ ¬U ∧ ¬W (in the initial
state). Hence,P (initially ¬D|init¬ab)

= P (initially ¬U, initially ¬W |init¬ab)
= P (U = 0,W = 0) = (1− p)(1− q). (4.16)

Therefore, we have:P (initially D|init¬ab)

= 1− P (initially ¬D|init¬ab)
= 1− (1− p)(1− q). (4.17)

Because¬D ⇔ ¬U ∧ ¬W in the initial state, we
also have that: initially D ⇔ initially U ∨ initially W.
Consequently, if u = U or w = W then:
P (initially {u,w}, initially D|init¬ab)

= P (initially {u, w}|init¬ab) = P (u,w).

Otherwise, ifu = ¬U andw = ¬W then:

P (initially {u,w}, initially D|init¬ab) = 0.

Finally, we have that:
P (initially {u,w}, initially D|init¬ab)

=
{

P (u,w) if u = U or w = W
0 if u = ¬U andw = ¬W.

(4.18)

It is easy to see that (4.12) follows from (4.14), (4.17) and
(4.18).
For proving (4.13), we use the formula:
P (¬D after make(¬A)|init¬ab, initially D) =

∑
s

P (¬D after make(¬A)|s)P (s|init¬ab, initially D)

(4.19)
Observe thatP (s|init¬ab, initially D) = 0 if init¬ab does
not hold in s (that is, s 6|= init¬ab). Hence, the right
hand side depends only on the terms containings such that
s |= init¬ab. In the following we will consider onlys such
that s |= init¬ab. Let us assume thatu andw are the liter-
als ofU andW that hold in the initial states. The variables
and fluents in the initial states satisfy the functions in (4.15).
Consequently, the variables and fluents ins are uniquely de-
termined by the values ofU andW , that is, byu andw. Sos
is also uniquely determined byu andw. Thus we have:

P (s|init¬ab, initially D) =

P (initially {u,w}|init¬ab, initially D). (4.20)

Assume that we reach the states′ by executingmake(¬A) in
the initial states. The action causesab(A) and¬A to be true.
Then it follows from the static causal laws (4.11) that in the



states′: C ⇔ U , B ⇔ C andD ⇔ B. Therefore,
in the states′, we have thatD ⇔ U . BecauseU is an
inertial unknown variable, its values are the same ins ands′.
Consequently,

¬D after make(¬A) ⇔ ¬D ∈ s′ ⇔ ¬U ∈ s′
⇔ ¬U ∈ s ⇔ initially ¬U

(4.21)

Sinces uniquely depends onu,w:

P (initially ¬U |s) = P (initially ¬U |u,w)

Thus we have:P (¬D after make(¬A)|s)
= P (initially ¬U |s) = χ(u = ¬U) (4.22)

From (4.19), (4.20) and (4.22), we have that:

P (¬D after make(¬A)|init¬ab, initially D)
=

∑
u,w χ(u = ¬U)P (initially {u,w}|init¬ab, initially D)

We know that χ(u = ¬U) 6= 0 only if u =
¬U . Furthermore, because of (4.12), ifu = ¬U then
P (initially {u, w}|init¬ab, initially D) 6= 0 only if w = W .
So the only possible positive term in the above sum corre-
sponds to the pairu = ¬U,w = W . Then:

P (¬D after make(¬A)|init¬ab, initially D)
= P (initially {¬U,W}|init¬ab, initially D)
= P (¬U,W )

1−(1−p)(1−q) = q(1−p)
1−(1−p)(1−q) .

5 Relating PCM and its encoding in PAL: the
main result

We now generalize Proposition 1 to all PCMs and their en-
coding in PAL. The proof of Proposition 1 will now serve as
a road map to the proof of the following general result.

Theorem 5.1 Given a probabilistic causal modelM =
〈M,P (u)〉, let D(M) be its respectively constructedPAL
action theory. Letinit¬ab = {initially ¬ab(v)|v ∈ V }. Let
u be a subset of background variable,v andw be subsets of
endogenous variables. Then we have the following relations
between entailments inPCM andPAL:

• M |=C P (u|w) = p if and only if D(M) |=A

P (initially u|init¬ab, initially w) = p (5.23)

• M |=C P (w|do(v)) = p if and only if D(M) |=A

P (w after do(v)|init¬ab) = p (5.24)

• M |=C P (¬w|w, do(¬v)) = p iff D(M) |=A

P (¬w after make(¬v) |init¬ab, initially w) = p
(5.25)

Note that, since the action theoryD(M) does not have non-
inertial unknown variabless = sI ∪ sF , for every states. We
will need some lemmas for the main proof. These lemmas are
stated in the context of the causal modelM and the action
theoryD(M) given in Theorem 5.1.

Lemma 5.2 Let u be a subset of exogenous variables andw
be a subset of endogenous variables.

P (u|w) = P (initially u|init¬ab, initially w) (5.26)

Proof: Using the Bayes’ rule we have:
P (initially u|init¬ab, initially w)

=
P (initially u, initially w|init¬ab)

P (initially w|init¬ab)
(5.27)

BecauseP (u|w) = P (u,w)
P (w) , the proof is completed once we

prove that:

P (u,w) = P (initially u, initially w|init¬ab)(5.28)

P (w) = P (initially w|init¬ab) (5.29)

First let us prove (5.28). (5.29) can be shown in a similar
manner. Letu1, . . . un be the inertial unknown variables. We
will useu1:n as the shorthand for{u1, . . . un}. We know that:

P (initially u, initially w|init¬ab) =
∑
u1:n

P (initially u, initially w|init¬ab, initially u1:n)×
P (initially u1:n|init¬ab).

(5.30)
Since the unknown variables are independent from the flu-
ents, initially u1:n is independent frominit¬ab. Then we
have that:

P (initially u1:n|init¬ab) = P (initially u1:n) = P (u1:n).
(5.31)

When init¬ab is true, by the static causal laws, the
variables and fluents satisfy the same set of equations
as that of the functional equations. Because the set
of functional equations forms a mapping fromU to V ,
w is uniquely determined byu1, . . . , un. Therefore,
P (initially u, initially w|init¬ab, initially u1:n)

= P (u,w|u1:n). (5.32)

Then (5.28) follows from (5.30), (5.31) and (5.32), because:

P (initially u, initially w|init¬ab)
=

∑
u1,...,un

P (u,w|u1, . . . , un)P (u1, . . . , un)
= P (u,w).

We can similarly prove (5.29).

Lemma 5.3 Letv andw be subsets of endogenous variables.
If s is an initial state such thats |= init¬ab then

(i) s is uniquely determined by its inertial unknown variable
subsetsI ,

(ii) probability of an observation depends only on the un-
known variables:P (¬w after make(¬v)|s) =

P (¬w after make(¬v)|init¬ab, initially sI) (5.33)

(iii) given an evidence, probability ofs depends only on the
unknown variables:

P (s|init¬ab, initially w) = P (sI |w, do(¬v)). (5.34)

Proof: The proofs of (i) and (ii) are straightforward.
(iii) When s |= init¬ab, the unknown variables determine
what state we are in. That is, conditioning oninit¬ab, the
initial states is determined bysI . Consequently,

P (s|init¬ab, initially w)
= P (initially sI |init¬ab, initially w). (5.35)



Moreover, since the unknown variables are independent of
each other:

P (initially sI |init¬ab, initially w)
=

∏
u P (initially u|init¬ab, initially w). (5.36)

By (5.26),P (initially u|init¬ab, initially w) = P (u|w). Be-
cause the interventiondo(¬v) does not effect the proba-
bility distributions of the exogenous variables:P (u|w) =
P (u|w, do(¬v)). Therefore,

P (initially sI |init¬ab, initially w)
=

∏
u P (u|w, do(¬v)) = P (sI |w, do(¬v)). (5.37)

Lemma 5.4 Letu1, . . . , un be the exogenous variables in the
causal model. LetU be some realization of these variables.
Let v andw be subsets of the endogenous variables. Assume
that s is an initial state such thats |= init¬ab ∪ {initially w}
andsI = U . Then

P (¬w after make(¬v)|s) = P (¬w|w, do(¬v), U). (5.38)

Proof: Let F be the set of the functional equations in the
causal modelM andF ′ be the set of functional equations in
the modified submodelM¬v.
Because the setsF andF ′ form mappings fromU to V ,
given the realizationU of the background variables, there ex-
ist unique realizationsV andV ′ of the endogenous variables,
such thatU ∪ V is the (unique) solution ofF andU ∪ V ′ is
the (unique) solution ofF ′.
Let A = {¬ab(vi)|vi is an endogenous variable}. ThenA ⊆
s, becauses |= init¬ab. Because of the static causal laws, the
literals (of the unknown variables and the fluents) in the states
should satisfyF . SincesI = U , it follows thats = A∪U∪V .
Moreover, sinces |= initially w we haveU ∪ V ⇒ w. Now,
P (U |w, do(¬v)) = P (U |w) 6= 0. Therefore,

P (¬w|w, do(¬v), U) = P (¬w,U |w,do(¬v))
P (U |w,do(¬v)) =

χ(U∪V ′⇒¬w)P (U |w,do(¬v))
P (U |w,do(¬v)) = χ(U ∪ V ′ ⇒ ¬w).

It can be shown that there exists a unique states′ such that:

Φ(make(¬v), s) = {s′}. (5.39)

It follows directly from (5.39) that
P (¬w after make(¬v)|s) = χ(s′ |= ¬w). Finally, the
proof will be completed by showing that

χ(U ∪ V ′ ⇒ ¬w) = χ(s′ |= ¬w). (5.40)

Proof of Theorem 5.1. (5.23) is proved in Lemma 5.2. To
prove (5.25), we apply formula (2.9) and the lemmas:

p = P (¬w after make(¬v)|init¬ab, initially w)
=

∑
s P (¬w after make(¬v)|s)P (s|init¬ab, initially w)

BecauseP (s|init¬ab, initially w) = 0 if s 6|= init¬ab or s 6|=
initially w we have:

p =
∑

s |= init¬ab
s |= initially w

P (¬w after make(¬v)|s)P (s|init¬ab, initially w)

Using Lemma 5.4 and (5.34) we have:

p =
∑

s |= init¬ab
s |= initially w

P (¬w|w, do(¬v), sI)P (sI |w, do(¬v))

BecausesI has range2U if s |= init¬ab we have:

p =
∑

U :U⇒w

P (¬w|w, do(¬v), U)P (U |w, do(¬v))

= P (¬w|w, do(¬v). 2

6 Conclusion and future work
In this paper we have shown how to encode reasoning in
probabilistic causal models in the action description lan-
guage PAL. The main observation is that functional equa-
tions of the formvi = fi(pai, Ui) need to be encoded as
¬ab(vi) causes vi = fi(pai, Ui) instead of the straightfor-
ward encodingtrue causes vi = fi(pai, Ui). This is be-
cause an action that directly changes the value ofvi makes
the equationvi = fi(pai, Ui) unusable. This is achieved in
the PAL encoding by makingab(vi) true.
One important aspect of the PAL encoding is that as the world
progresses if we want to reactivate a previously inactivated
functional equationvi = fi(pai, Ui) all we need to do is
makeab(vi) false. (Reactivation need to be done with care
though.) In probabilistic causal models once a functional
equation is inactivated it can no longer be activated. (Note
that the differences between PAL and probabilistic causal
models are discussed in[Baral et al., 2002] and we do not
repeat them here as the purpose here is to relate them.)
In the definition of causal models, the set of functional equa-
tion F is assumed to be a mapping fromU to V . While it
is not clear how to do counterfactuals in the framework of
[Pearl, 2000] without the assumption, it seems straightfor-
ward to do so in thePAL framework. We will further inves-
tigate this difference. We also plan to testPAL formalism in
real world applications and to develop algorithms for learning
PAL theories.
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