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Abstract representative of the high level action description languages
[Gelfond and Lifschitz, 1993; McCain and Turner, 1995;
Gelfond and Lifschitz, 1998as among the action theories
where actions have distinct names, this is the most similar
to probabilistic causal models the way it handles uncer-
tainty. Also, most other action formalisms that incorporate
uncertainty are limited in the sense that they are solely geared
towards planning.

The rest of this paper is organized as follows. In Section 2
we give a brief overview of PAL. In Section 3 we give a brief
overview of probabilistic causal models (PCM). We then (in

. R Section 4) present an encoding of PCM in PAL. We then state
1 Introduction and motivation and prove a result that shows the equivalence of various rea-
Normally an action when executed in a world changes theonings in PCM and the corresponding reasonings in the en-
state of the world. Reasoning about actions is importancoded PAL. We illustrate the encoding and the logic behind
in several ‘intelligent’ tasks such as planning, hypotheti-the proof through an example. Finally, we conclude and dis-
cal reasoning, control generation and verification (for dy-cuss some implications of this result and future works in Sec-
namical systems), and diagnosis. Often the effect of ardion 6.

action on the world is not deterministic but rather has an

uncertainty associated with it. In recent years there hav@  The Language PAL: a brief overview
been several proposals (for exampl®@earl, 1999; 2000;

Baral et al, 2002: Boutilier and Goldszmidt, 1996; Reiter, 1€ alphabet of the language PAL consists of four non-empty
2001; Littman, 199) to represent and reason with such ac-disioint sets of symbolg, U;, Uy andA. They are called the
tions. In all these proposals, except[iearl, 1999; 2000; set of f_Iuenf[s, the set oher_t|al unknown varlables,_the set
1994, actions have explicit names and their effects on theof non—lnemallunknown variables and the.set of actions. The
world are described by various means. [Rearl, 1999; unknown varlab_les are assumed to be independent of each
2004 the dynamics of the world is described through rela-Other. Afluent literalis a fluent or a fluent preceded by
tionships between fluents or variables (which denote propef>n Unknown variable literal is an unknown variable or an un-
ties of objects in the world) that are expressed through funcknown variable preceded by. A literal is either a fluent
tional relationships between them. In addition probabilitiesit€ral or an unknown variable literal. formulais a proposi-
are associated with a set of fluents referred to as exogeno§na! formula constructed from literals.

(or unknown) variables. Together they are referred torab- A states is an interpretation of fluents and unknown vari-

abilistic causal modelsThe effect of actions are then formu- ables that satisfy certain conditions (to be mentioned while
lated as “local surgery”on these models. discussing semantics); For a statéhe sub-interpretations of

In this paper our goal is to study the relationship between reas res_trlcted to fluentg, inertial unknown variables, and non-
soning about actions in probabilistic causal models and simin€rtial unknown variables are denoteddyy, s;, andsy re-
ilar reasoning in the action description language FBaral spectively. PAL has four components: a domain de_s_cr|pt|0n
et al, 2009 as a representative of the approaches where addnguage’ALp, alanguagé’ AL p to express unconditional
tions are named and have effects associated with it. ThBrobabilities about the unknown variables, a language.o
motivation behind studying this relationship is to objectively {0 SPecify observations, and a query language.

compare the expressiveness of these two formalisms vis-g- . o

vis e%ch other. \BVe pickrobabilistic causal modelas it is %1 PALp: The domain description language

the most recent representative of its class and the award wi domain descriptionis a collection of propositions of the
ning book[Pearl, 200D is based on it. We pick PAL as a following forms:

Pearl’s probabilistic causal model has been used in
many domains to reason about causality. Pearl’s
treatment of actions is very different from the way
actions are represented (explicitly) and their impact
is reasoned in most other papers in the literature.
In this paper we show how to encode Pearl’s prob-
abilistic causal model in the action language PAL
thus relating this two distinct approaches to reason
about actions.



2.2 PALp: Probabilities of unknown variables

a causes ¢ if ¢ (2.1)  Aprobability descriptior of the unknown variables is a col-
0 causes ¢ (2.2) lection of propositions of the following form:
impossible a if ¢ (2.3) probability of w is p (2.5)

whereaq is an actiony is afluentformula, ¢ is a formula of  \\herew is an unknown variable, angde [0, 1].
fluents andnertial unknown variables, and is a formula of !
fluents andunknowrvariables.

Propositions of the form (2.1) describe the direct effects 012
actions on the world and are callelynamic causal laws
Propositions of the form (2.2), calledfatic causal lawsde-
scribe causal relation between fluents and unknown variabl
in aworld. Propositions of the form (2.3), calledecutability
conditions state when actions are not executable. P(s,)

Semantics: Characterizing the transition function: Let D P(s) = s'lsL = su)}| (2.6)
be a domain description in the languagerod L . An inter- o

pretation I of the fluents and unknown variablesfL, 2.3 PALg: The Query language

is a maximal consistent set of literalsBALp. Aliterallis A query is of the form:

said to be true (resp. false) iniff | € I (resp.—l € I). The

truth value of a formula irf is defined recursively over the probability of [y after aq,...,a,]is p (2.7)
propositional connective in the usual way. For exampleg  wherey is a formula of fluents and unknown variables's
is true inI iff fistrueinl andq is true inI. The formulay are actions, ang € [0, 1].

is said to hold in/ (or I satisfies))), denoted byl = ¢, if ¥ semantics — Entailment of Queries inPAL: The entail-

Semantics: Each proposition above directly gives us the
robability distribution of the corresponding unknown vari-
ble as:P(u) = p.

For any state, s, denotes the interpretation of the unknown
evariables ok, that is,s, = s; U siy. The unconditional prob-
e?oility of the various states is defined as:

Istrue in. ment is defined in several steps. First the transitional proba-
A set of formulas fromPALp is logically closedif it is  bjlity between states due to a single action is defined as fol-
closed under propositional logic (w.rRALp). lows.

LetV be a set of formulas anfl be a set of static causal laws 5lUN| P(sly) if s’ € D(a,s)

of the formé causes. V is said to be closed undés if for P(s'|s) = Pu(s'|s) = § [®(a9)]” N '

every ruled causes v in K, if 6 belongs tol’ then so does 0, otherwise.

1. Cnk (V') denotes the least logically closed set of formulasThe (probabilistic) correctness of a single action plan given
from PALp that containd” and is also closed undés. that we are in a particular statés defined as follows.

A states of D is an interpretation that is closed under the set P(y after a|s) = Z Pu(s']s)

of static causal laws db.

An action a is prohibited (not executableln a states if
there exists inD an executability condition of the form
impossible a if ¢ such thatp holds ins.

s'€®(a,s)\s' =
Next the transitional probability due to a sequence of actions,
is recursively defined starting with the base case.

The effect of an action an a states is the set of formulas Pj)(s']s) = 1if s = s; otherwise it is0.
Egl(dsg iis}{w | D contains a lawy causesy if ¢ and ¢ Piay.an)(s'ls) = ZP[al,...,an_l}(S"|S)Pan (s']s")

Let S be the set of the states @f. A transition function  Finally, the (probabilistic) correctness of a (multi-action) plan
® is a function fromA x S to 2°. If a is not prohibited  given that we are in a particular statis defined as follows.

(i.e.,executable) is, then P( _ /
p after afs) = Py (s']s) (2.8)
B(a,s) = {5 | Sp; = Cnp((sps Nsh ) UB(s)) }; (2.4) s/em%w:@ ol

If a is prohibited (i.e., not executable) snthen®(a, s) is (. 2.4 PALo: The observation language
Every domain descriptiorD in a languagePALp has a  An observation descriptio? is a collection of proposition of

unique transition functio. the following form:¢) obs after ay,...,a,,

An extended transition functioh expresses the state transi- Where is a fluent formula, and;’s are actions. When,

tion due to a sequence of actions. n = 0, it is simply written asinitially . The probability
- - P(yp obsafter is computed by the right hand side of

Definition 1 ®([a],s) = ®(a,s); (Z(g) afs) P y g

®([a1,... an],s) = Us/eé(ahs) O(laz; ..., an],s) O semantics — assimilating observations ilPALo: Using

Definition 2 Given a domain descriptio®, and a stats,  the Bayes’ rule, the conditional probability of a state given

s Ep p after ay,. .., a,, some observations is given as follows.

if pistruein all states i®([aq, ..., a,],s). P(O[s:)P(s) i P(Ols)\Pls. 0
(Often when it is clear from the contet is written instead ~ P(s;|O) = { 2., P(OIs))P(s)) 2, P(Olsi)Pls;) 7
of =p.) O 0, otherwise.



2.5 Queries with observation assimilation

The (probabilistic) correctness of a (multi-action) plan givenBecause the set of functional equations forms a mapping
mines a probability distribution over the endogenous vari-

ables. Hence, given any subséfsand E of U U V, the

conditional probabilityP(X = z|FE = e) is well-defined by

(M, P(u)).

probability description of the unknown variables, and an ob-"CM)

servation description. Using the above formula, the entail- (i) Given a probabilistic causal modél = (M, P(u)), the
ment from an action theory to queries is defined as follows: probability ofz given an observatioais the conditional
probability P(zle). If P(z|e) = p, we write M ¢

P(p after a|0) = Y P(s|0) x P(y after afs)  (2.9)

Definition 3 D U P U O =¥ P(zle) =
probability of [pafter ar,...,a,] s p iff rie) =p-
P(pafter ai,...,a,|0) =p m| (i) Given a probabilistic causal mod&ll = (M, P(u)), the

probability of z given an interventiodo(y), denoted by
P(x|do(y)), is the probability ofx computed w.r.t the
submodeWM = (M, P(u)). If P(z|do(y)) = p, we
write M =¢ P(z|do(y)) = p.

Given a probabilistic causal mod& = (M, P(u)),
the probability ofz given observatiore and interven-
tion do(y), denoted byP(z|e, do(y)), is the probability
P(z|do(y)) that is computed w.r.t the modified causal
model M’ = (M, P(ule)), whereP(ule) is computed
w.r.t the modelM. If P(xle,do(y)) = p we write
Vis a set{Vi, Vs, ...V, } of variables, callectndoge- M ¢ P(zle, do(y)) = p- -
nous that are determined by variables in the model -From the above definition it follows thatM, P(u)) FEc
that is, variables it/ U V; and P(z|do(y)) = p iff (M,,P(u)) Ec P(x) = p; and
Fis a set of functiong f1, fo, . .. f,,} such that eaclf; (M, P(u)) Ec P(zle,do(y)) iff (M, P(ule)) Fc P(x) =

is a mapping from (the respective domains@fy (V\ P

V;) to V; and such that the entire sBtforms a mapping . . .
fromU to V. In other words, eaclf tells us the value of 4 Encoding PC'M by P AL action theories
V; given the values of all other variableslituV, and the
entire setF’ has a unique solutiol (u). Symbolically,
the set of equations’ can be represented by writing

(Often we write the entailment in the shorter formas P U
O =4 P(yp after ay,...,a,|0) = p).

3 Probabilistic causal models (PCMs)

Definition 4 [Pearl, 2000
A causal modeis a tripleM = (U, V, F') where:

(iii)

(i) U is a set ofbackgroundvariables, (also calledxoge-
noug, that are determined by factors outside the model.

(i)
(iii)

In this section we give an encoding of PCM in PAL, illustrate
the encoding with an example, and show the correspondence
between query entailment in PCM and query entailment of
the corresponding encoding in PAL.

Definition 8 Given a PCMM = (M, P(u)) and assuming
wherepa; is any realization of the unique minimal set of that the functions;(pa;, U;) in M are logical functions, we
variablesPA; in V\V; (connotingparent§ sufficientfor  construct a PAL action theo(M) as follows:
representingf;. Likewise,U; C U stands for the unique e There are no non-inertial unknown variables.

minimal set of variables &/ sufficient for representing T _ _
The inertial unknown variables are the exogenous vari-

i b
— ables inM with the same probability distributions:
Definition 5 [Pearl, 2000

v; = filpag,u;))i=1,...,n

Let M be a causal modeKX be a set of variables iir, and
x be a particular realization oX. A submodelM,, of M is
the causal modeM,, = (U,V, F,) whereF, = {f; : V; &
XIUu{X =z}. ]

Submodels are useful for representing the effect of local ac-
tions and hypothetical change¥l,, represents the model that

results from a minimal change to maké = x hold true un-
der anyu.

Definition 6 [Pearl, 2000
A probabilistic causalmodel (PCM) is a paif{M, P(u))

whereM is a causal model anBl(u) is a probability function
defined over the domain &f. ]

probability of wis P(u), for every unknown variable.

The endogenous variables i are fluents inD(M).
Moreover, for every fluent;, there is an additional flu-
entab(v;) in D(M).

e For each functional equation of the form; =

fi(pa;, U;) in M the following static causal rule is in
D(M): —ab(v;) causesv; < fi(pa;,U;).

For every fluentv;, D(M) has actions rhake(v;)’,
"make(—v;)" with the following effects:

make(v;) causes{ab(v;), v; }
make(—v;) causes{ab(v;), w; }. O



We now consider thdiring squad example from[Pearl,
1999, and show its encoding in PAL. (In the following sec-
tions, we denote the indicator function Rythat is,x(X) =
1if X istrue andy(X) = 0if X is false.)

Example 1 The probabilistic causal model of the firing Because of the static causal laws (4.11), giveit-s, the
squad example has two exogenous variableandW and  variablesU, W and the fluentsi, B, C, D in the initial state
endogenous variables, B, C, andD. These variables stand satisfy:

P(initially {u,w}|init_qp, initially D)

_ P(initially {u,w},initially D|init_.) (4.14)
B P(initially Dlinit_gp) '

for the following propositions:

court orders the execution;

= captain gives a signal;

= rifle A shoots;

rifle B shoots;

= the prisoner dies;

rifle A pulls the trigger out of nervousness.

SoweQC
Il

The causal relationships between the variables are described

by the following functional equations:
cC=U; A=CvW, B=(C;, D=AVB.

In [Pearl, 1999 the goal is to compute the probability Because—D <

CcC < U, A & CVvW,
B & (C,and D & AVB

It follows from (4.15) that-D < —U A =W (in the initial
state). HenceP(initially —D|init_.;)

(4.15)

= P(initially —U, initially —W|init_,s)

4.16
—PU=0W=0)=1-p1-q. 9
Therefore, we haveP(initially D|init_.;)

=1 — P(initially —Dlinit_,p) 4.17)

=1-(1-p)(1-q).
-U A =W in the initial state, we

P(—D|D, do(—A)), which expresses the probability that the also have that:initially D < initially U Vv initially W.

prisoner would be alive ifA had not shot, given that the pris- Consequently, ifu = U

oner is in fact dead. There it is shown that:

_ Pluw) _ o
P(u,w|D) = { I—(1-p)(-0 !f u=Uorw=W,
0 if u=-U andw = —W.
1—
P(=D|D, do(~A)) = =20

(4.10)

We now construct? AL encoding of the above. The action

theory contains inertial unknown variablés and W, flu-
ents A, B,C, D, ab(A),ab(B),ab(C), and ab(D).

ing static causal laws:

-ab(C) causes C < U

—ab(A) causes A & CVW (4.11)
-ab(B) causes B & C :
-ab(D) causes D < AVEB

We now relate the probabilities computed with respect to the

PCM of the above example with its PAL encoding.

Proposition 1 Let M = (M, P(u)) be the PCM of firing
squad example given above, and let us denote its encoding ot hold ins (that is, s [ init_qp).

PAL by D(M). Letinit_q, = {initially —ab(A)A—ab(B)A
—ab(C) A —ab(D)}. For anyu andw literals of U andWV:
P(initially {u,w}|init_q, initially D)

P(u,w) . _ _
_ | mawag Tu=Uorw=W, (4.12)
0 if u=-U andw = —-W.
P(—D after make(—A)|init_qp, initially D)
1—
a1 —p) (4.13)

S 1-(1-p)(1-9q)
Proof (sketchy
We first evaluate P(initially {w,w}|init_qs, initially D).
For that we use the Bayes' rule:

Trans-
lated intoP AL, the functional equations become the follow-

or w = W then:
P(initially {u,w},initially D|init—qp)
= P(initially {u,w}|init_qp) = P(u,w).

Otherwise, ifu = -U andw = —-W then:
P(initially {u,w},initially D|init_q;) = 0.
Finally, we have that:
P(initially {u,w},initially D|init_qp)
| Pluy,w) fu=Uorw=WwW
10 if u=-U andw = -W.

It is easy to see that (4.12) follows from (4.14), (4.17) and
(4.18).

For proving (4.13), we use the
P(—D after make(—A)|init_qp, initially D) =

(4.18)

formula:

> P(=D after make(=A)|s) P(s|init-qp, initially D)

(4.19)
Observe thatP(s|init_qp, initially D) = 0 if init_,, does
Hence, the right
hand side depends only on the terms contaisisgch that
s = init_qp. In the following we will consider only such
thats = init_,p. Let us assume that andw are the liter-
als of U andW that hold in the initial state. The variables
and fluents in the initial statesatisfy the functions in (4.15).
Consequently, the variables and fluents ere uniquely de-
termined by the values @ andW, that is, byu andw. Sos
is also uniquely determined hyandw. Thus we have:

P(s|initqp, initially D) =

P(initially {u,w}|init_q, initially D). (4.20)

Assume that we reach the statdy executingnake(—A) in
the initial states. The action causes(A) and—A to be true.
Then it follows from the static causal laws (4.11) that in the



states: C & U,B < (CandD < B. Therefore, Proof: Using the Bayes’ rule we have:

in the states’, we have thatD < U. Becausel is an P(initially w|init—qp, initially w)
inertial unknown variable, its values are the same amds’. P(initiall initiall linitap)
Consequently, = y u, y witntt-ab (5.27)

, ) P(initially w|init_qp)
—-D after make(—A) & -Des < -Ucs

& U €s < initially —U (4.21) BecauseP (u|lw) = Plgl(f;f‘;), the proof is completed once we
Sinces uniquely depends o, w: prove that:
P(initially —~U|s) = P(initially —U|u, w) P(u,w) = P(initially w,initially wl|init_q;)(5.28)
P = P(initiall init—q 5.29
Thus we haveP(—D after make(—A)ls) . (w) ( Yy wlinit-o) ) ( _) )
I First let us prove (5.28). (5.29) can be shown in a similar
= P(initially ~Uls) = x(u = ~U) (4.22)  manner. Let, . . . u, be the inertial unknown variables. We
From (4.19), (4.20) and (4.22), we have that: will usew; .,, as the shorthand fdr, . . . u, }. We know that:

P(initially w, initiall init_gp) =
P(~D after make(—A)|init s, initially D) (initially y wlinit—qb)
= Zu,w X(U = _‘U)P(Inltla”y {u,w}|z’nitﬁab,initially D) Zp(mma”y u, Inltla”y w|im’tﬁab7 |n|t|a||y u1:n)x
We know that x(u = -=U) # 0 iny if u = Ulin Piitially 1wy, |initoss).
~U. Furthermore, because of (4.12),f = -U then : (5.30)
Blinitially {u’w}‘-@mtﬁab’ !nltlally D)- 7 0onlyifw=W. Since the unknown variables are independent from the flu-
So the only possible positive term in the above sum COMegnts, initially w,., is independent frominit_.,. Then we

sponds to the pait = —=U,w = W. Then: have that:
P(—D after make(—A)|init_qp, initially D) P(initiall Ninit — P(initiall Y= Plus).
— P(initially {~U, W }|init_.p. initially D) (Rl sindtoa) = PRI i) (uZéf)gl)
= 1,1(31(15)’2/1(1) = 1,(3(,1;)’8,(1). When init_,;, is true, by the static causal laws, the

variables and fluents satisfy the same set of equations
5 Relating PCM and its encoding in PAL: the  as that of the functional equations. Because the set
main result of functional equations forms a mapping froth to V,

) . _ w is uniquely determined byui,...,u,.  Therefore,
We now generalize Proposition 1 to all PCMs and their €N-p(initially w, initially w|init_qp, initially 1.,

coding in PAL. The proof of Proposition 1 will now serve as
a road map to the proof of the following general result. = P(u,wl|u1:y). (5.32)

Theorem 5.1 Given a probabilistic causal modeM =  Then (5.28) follows from (5.30), (5.31) and (5.32), because:
(M, P(u)), let D(M) be its respectively constructddAL - " o
action theory. Letnit-q, = {initially —ab(v)|v € V}. Let Pinitially u,initially wlinit-q)

\ = P un)Plug, .,
u be a subset of background variabtleand w be subsets of _ 12:,:(“1)“ (w, whrs - un) Plun tn)
endogenous variables. Then we have the following relations = AW
between entailments IRCM and PAL: We can similarly prove (5.29).
o M |=¢ P(ulw) =p ifand only if D(M) =4 Lemma 5.3 Letv andw be subsets of endogenous variables.

If s is an initial state such that = init_,;, then

_ _ (i) sisuniquely determined by its inertial unknown variable
e M [=¢ P(wldo(v)) = p ifand only if D(M) =4 subsety,

P(w after do(v)|init—ap) = p (5.24) (i) probability of an observation depends only on the un-
) known variables:P(—w after make(—v)|s) =
e M Ec P(~w|w,do(-w)) =p iff DIM) Ea
P(—w after make(—wv) |init_p, initially w) = p

(5.25) (i) given an evidence, probability sfdepends only on the
unknown variables:

P(initially w|init—q, initially w) = p (5.23)

P(—w after make(—v)|init_qs, initially sy) (5.33)

Note that, since the action theofy(M) does not have non-
inertial unknown variables = s; U sy, for every state. We P(s|initqp, initially w) = P(sy|w,do(—w)). (5.34)
will need some lemmas for the main proof. These lemmas are

stated in the context of the causal model and the action -roof: The proofs of (i) and (ii) are straightforward. _
theory D(M) given in Theorem 5.1. (i) When s = init_,, the unknown variables determine

what state we are in. That is, conditioning omt_.;, the

Lemma 5.2 Letu be a subset of exogenous variables and initial states is determined by, . Consequently,

be a subset of endogenous variables.
I _ P(s|init_ g, initiall
P(ujw) = P(initially ul|init_qp, initially w) (5.26) (s]nat-ap y w)

— P(initially s;[init-qp, initially w). (5.35)



Moreover, since the unknown variables are independent dflsing Lemma 5.4 and (5.34) we have:

each other:
P(initially s;|init_p, initially w) 538 2 Plwlw, do(o),s)Plsihe, do(-v))
= [, P(initially u|init_ ., initially w). : 2 e,

By (5.26),P(initially ulinitq, initially w) = P(ulw). Be-  Because; has range if s = init_q, we have:
cause the interventiodo(—v) does not effect the proba-

bility distributions of the exogenous variable®(u|w) = p = Z P(~w|w, do(—v), U)P(U|w, do(—w))
P(u|w, do(—w)). Therefore, U

= —/ — . 0
P(initially s;|init—qp, initially w) P(~wlw, do(-wv)

= [1, P(ulw,do(-v)) = P(sr|w, do(-v)). (5.37)

6 Conclusion and future work

Lemma 5.4 Letus, ..., u, be the exogenous variables inthe |, s naper we have shown how to encode reasoning in
causal model. LetV be some realization of these variables.

dwb b f1h d bl robabilistic causal models in the action description lan-
Letv andw be subsets of the endogenous variables. ASSU"%Jage PAL. The main observation is that functional equa-

thats is an initial state such that = init—,, U {initially w}  tions of the formv; = f;(pas, U;) need to be encoded as
ands; = U. Then —-ab(v;) causesv; = f;(pa;, U;) instead of the straightfor-
_ _ Y _ ward encodingrue causes v; = f;(pa;,U;). This is be-

P(~w after make(-w)ls) = P(~wlw, do(~v), U). (5-38) cause an action that directly chang(es the )valueicmakes
Proof: Let F be the set of the functional equations in the the equationy; = f;(pa;, U;) unusable. This is achieved in
causal modeM andF’ be the set of functional equations in the PAL encoding by makingb(v;) true.
the modified submode1-,. One important aspect of the PAL encoding is that as the world
Because the setd and 7' form mappings fromU/ to V,  progresses if we want to reactivate a previously inactivated
given the realizatiof/ of the background variables, there ex- functional equatiorv; = f;(pa;,U;) all we need to do is
ist unique realization¥” andV’ of the endogenous variables, makeab(v;) false. (Reactivation need to be done with care

such tha/ U V is the (unique) solution of andU UV’ is  though.) In probabilistic causal models once a functional
the (unique) solution af’. equation is inactivated it can no longer be activated. (Note
Let A = {—ab(v;)|v; is an endogenous variabje ThenA C that the differences between PAL and probabilistic causal

s, because = init_,;. Because of the static causal laws, themodels are discussed [Baral et al, 20_03 and we do not
literals (of the unknown variables and the fluents) in the state "eP€at them here as the purpose here is to relate them.)

should satisfyF. Sinces; = U, it follows thats = AUUUV. In the definition of causal models, the set of functional equa-
Moreover, since = initially w we havel UV = w. Now, tion F' is assumed to be a mapping frarhto V. While it
P(U|w,do(—v)) = P(U|w) # 0. Therefore, is not clear how to do counterfactuals in the framework of
[Pearl, 200D without the assumption, it seems straightfor-
P(~w|w,do(—v),U) = % = ward to do so in the® AL framework. We will further inves-
x(UUV'==w) P(U|w,do(—v)) __ (i] UV = —w) tigate this difference. We also plan to tést L formalism in
P(Ulw,do(-v)) =X : real world applications and to develop algorithms for learning
. . PAL theories.
It can be shown that there exists a unique staseich that:
®(make(—wv),s) = {s'}. (5.39) References
It follows directly from (5.39) that [Baraletal, 2003 C. Baral, N. Tran, and L. Tuan. Reason-
P(—w after make(—w)|s) = x(s' = —w). Finally, the ing about actions in a probabilistic setting. Broc. of
proof will be completed by showing that AAAI'2002, pages 507-512, 2002.
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x(UUV' = —w) =x(s E w). (5.40)

Proof of Theorem 5.1. (5.23) is proved in Lemma 5.2. To

prove (5.25), we apply formula (2.9) and the lemmas: [Gelfond and Lifschitz, 1993M. Gelfond and V. Lifschitz.
- I Representing actions and change by logic programst-
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= > . P(—w after make(—w)|s) P(s|init—qs, initially w)
[Gelfond and Lifschitz, 1998M. Gelfond and V. Lifschitz.
BecauseP(s|init_q, initially w) = 0if s B init_,p Or s [~ Action languages.Electronic Transactions on AB(16),
initially w we have: 1998.
o _ _ . I ittman, 1997 M. Littman. Probabilistic propositional
p= Z P(~w after make(=v)|s) P(s|init ap, initially HH_ planning: representations and complexity. AAAI 97,

SE et pages 748-754, 1997.
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