FASCINATE: Fast Cross-Layer Dependency Inference on Multi-Layered Networks

Presented by Chen Chen

Chen Chen Hanghang Tong Lei Xie Lei Ying Qing He
Multi-Layered Networks are Everywhere!

Infrastructure Networks
- Power Grid
- AS Network
- Transportation Network

Cross-Layer
- **Power Supply, Control**
 - (Power Station→Routers)
- **Power Supply, Fuel Supply**
 - (Power Station→Transportation)
- **Control**
 - (Routers→Transportation)

Collaboration Platforms
- Team Network
- Social Network
- Information Network

Bio Systems
- Chemical Network
- Drug Network
- Disease Network
- PPI Network

Intra-Layer
- Power Supply, Control
- Membership
 - (Team→Employees)
- Specialization
 - Employee→Information
- Composition
 - (Chemical→Drug)
- Treatment
 - (Drug→Disease)
- Association
 - (Disease→PPI)
Cross-Layer Dependency

- **Role:** Unique topology characteristic of multi-layered networks

- **Importance:** Key to multi-layered network mining tasks (e.g. connectivity control, robustness analysis)

- **Challenge:** Incomplete cross-layer dependencies
Q1: How to infer the hidden cross-layer dependencies?
Dependencies of Zero-Start nodes

- **Obs.** New nodes are emerging over time

- **Q2:** How to efficiently infer the dependencies of zero-start nodes?
Roadmap

- Motivation
- Q1: Cross-Layer Dependency Inference
 - Q2: Dependencies for Zero-Start Nodes
- Evaluations
- Conclusions
Background: A (Simplified) Multi-layered Network Model

- **A tuple** $\Gamma = \langle G, A, D \rangle$
 - G: layer-layer dependency network
 - A: intra-layer connectivity
 - D: cross-layer dependence

Q1: Dependency Inference

- **Key Idea 1**: Collaborative Filtering

Dependency Only

Users ≈ Routers | Movies ≈ Transportation | Known Ratings ≈ Observed Cross-Layer Dependency

\[R \approx F_1 \times F_2' \]
Q1: Dependency Inference

- **Key Idea 2:** Collaborative Filtering with Side Information

Two-layered Network

![Diagram](image-url)

Movie-Movie Similarity \(\approx \) Transportation Network \| Social Network \(\approx \) AS Network

Known Ratings \(\approx \) Support from Routers to Transportation Network
Node Homophily

- **Assumption**: closely connected entities within each layer tend to have similar latent profiles.

\[
F(u_1, :) \approx F(u_2, :)
\]

\[
(\min \text{tr}(F'(D_U - U)F))
\]

Power Grid

AS Network

Transportation Network

Celebrities \approx Power Plants | Users \approx Routers | Movies \approx Transportation

Known Ratings, Movie Cast, Fans \approx Observed Cross-Layer Dependencies
Q1: Dependency Inference

- **Key Idea 3:** Collective Collaborative Filtering

Multi-layered Network

- Actor Similarity
 \[A_1 \Rightarrow F_1 \]

- Actor-Movie Cast
 \[D_{1,3} \approx F_1 \times F_3' \]

- Movie Similarity
 \[A_3 \Rightarrow F_3 \]

- Actor-User Fans
 \[D_{1,2} \approx F_1 \times F_2' \]

- User Similarity
 \[A_2 \Rightarrow F_2 \]

- User-Movie Ratings
 \[D_{2,3} \approx F_2 \times F_3' \]

- Known Ratings, Movie Cast, Fans \(\approx \) Observed Cross-Layer Dependencies
Optimization Problem

- **Objective Function:**

\[
\min_{F_i \geq 0 (i=1,\ldots,g)} J = \sum_{i,j:G(i,j)=1} \| W_{i,j} \odot (D_{i,j} - F_i F_j') \|_F^2 + J = \sum_{i,j:G(i,j)=1} \| W_{i,j} \odot (D_{i,j} - F_i F_j') \|_F^2 +
\]

- **Challenge:** Not jointly convex w.r.t. \(F_i (i=1,\ldots,g) \)!

- **Q:** How to find a **local** optimal?

Matching observed cross-layer dependencies

Node homophily

Regularization

Hard to find **global** optimal solution!
FACINATE: Proposed Solution

- **Obs.:** J becomes convex if we fix all but one (e.g. F_i) latent matrices

- **Method:** Block coordinate descent
 Fixing all other $F_j(j \neq i)$, the objective function w.r.t. F_i is
 \[
 \min_{F_i \geq 0} J_i = \sum_{j:G(i,j)=1} \| W_{i,j} \odot (D_{i,j} - F_iF_j') \|_F^2 + \alpha tr(F_i'(T_i - A_i)F_i) + \beta \| F_i \|_F^2
 \]
 - Cross-layer dependencies that involve layer i
 - Homophily in layer i
 - Layer regularization

- **Multiplicative Update Rules:**
 \[
 F_i(u, v) \leftarrow F_i(u, v) \frac{X(u, v)}{Y(u, v)}
 \]
 \[
 X = \sum_{j:G(i,j)=1} (W_{i,j} \odot W_{i,j} \odot D_{i,j})F_j + \alpha A_iF_i
 \]
 \[
 Y = \sum_{j:G(i,j)=1} (W_{i,j} \odot W_{i,j} \odot (F_iF_j'))F_j + \alpha T_iF_i + \beta
 \]
Roadmap

- Motivation
- Q1: Cross-Layer Dependency Inference
- Q2: Dependencies for Zero-Start Nodes
- Evaluations
- Conclusions
Q2: Dependencies for zero-start nodes

\[A_1 \]

\[s \]

\[\hat{A}_1 = \begin{bmatrix} A_1 & s' \\ s & 0 \end{bmatrix} \]

\[F_i \rightarrow \hat{F}_i \ (i \neq 1) \]

\[F_1 \rightarrow \hat{F}_1 = [\hat{F}_1(1_{n1} \times r), f] \]

Decompose Objective Function

\[\hat{j} = J + J^1 \]

\[\begin{cases} J: \text{objective function without zero-start node} \\ J^1: \alpha \sum_{v=1}^{n_1} s(v) \parallel f - \hat{F}_1(v,:) \parallel^2_2 + \parallel f \parallel^2_2 \end{cases} \]

Local Neighbors

Existing Nodes

New Node
Q2: Dependencies for zero-start nodes

- **Objective Function with Zero-Start Node:**

 \[
 \min_{\hat{F}_i \geq 0} \hat{j} = J + J^1 \\
 J: \text{objective function without zero-start node} \\
 J^1: \alpha \sum_{v=1}^{n_1} s(v) \| f - \hat{F}_1(v,:) \|_2^2 + \| f \|_2^2
 \]

- **Local Search Assumption:**

 \[
 \hat{F}_{1(n_1 \times r)} \approx F_1 \\
 \hat{F}_i \approx F_i \ (i \neq 1)
 \]

- **Solution:**

 \[
 \min_{\hat{F}_i \geq 0} \hat{j} = J + J^1 \\
 \rightarrow \min_{f \geq 0} J^1 \ \text{sub. to } \hat{F}_{1(n_1 \times r)} = F_1^* \\
 f = \frac{\alpha s F_1^*}{\beta + \alpha \sum_{v=1}^{n_1} s(v)}
 \]

 Only related to zero-start node’s local neighbors!
Roadmap

- Motivation
- Q1: Cross-Layer Dependency Inference
- Q2: Dependencies for Zero-Start Nodes
- Evaluations
- Conclusions
Experimental Set-up

- **Datasets:**

 - **SOCIAL**
 - Paper
 - Author
 - Venue

 - **BIO**
 - Chemical
 - Gene
 - Disease

 - **INFRA-5**
 - Internet
 - R1
 - R2
 - R3
 - R4

 - **INFRA-3**
 - Power
 - AS

<table>
<thead>
<tr>
<th>Datasets</th>
<th>#Layers</th>
<th>#Nodes</th>
<th>#Links</th>
<th>#CrossLinks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCIAL</td>
<td>3</td>
<td>125,344</td>
<td>214,181</td>
<td>188,844</td>
</tr>
<tr>
<td>BIO</td>
<td>3</td>
<td>35,631</td>
<td>253,827</td>
<td>75,456</td>
</tr>
<tr>
<td>INFRA-5</td>
<td>5</td>
<td>349</td>
<td>379</td>
<td>565</td>
</tr>
<tr>
<td>INFRA-3</td>
<td>3</td>
<td>15,126</td>
<td>29,861</td>
<td>28,023,500</td>
</tr>
</tbody>
</table>

- **Evaluation Objectives:**
 - Effectiveness: How accurate is FACSINATE?
 - Efficiency: How fast is FACSINATE?
Effectiveness of FASCINATE (Q1)

Cross-layer dependency inference on BIO dataset

<table>
<thead>
<tr>
<th>Methods</th>
<th>MAP</th>
<th>R-MPR</th>
<th>HLU</th>
<th>AUC</th>
<th>Prec@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASCINATE</td>
<td>0.3979</td>
<td>0.4066</td>
<td>45.1001</td>
<td>0.9369</td>
<td>0.1039</td>
</tr>
<tr>
<td>FASCINATE-CLUST</td>
<td>0.3189</td>
<td>0.3898</td>
<td>37.4089</td>
<td>0.9176</td>
<td>0.0857</td>
</tr>
<tr>
<td>MulCol</td>
<td>0.3676</td>
<td>0.3954</td>
<td>42.8687</td>
<td>0.9286</td>
<td>0.0986</td>
</tr>
<tr>
<td>PairSid</td>
<td>0.3623</td>
<td>0.3403</td>
<td>40.4048</td>
<td>0.8682</td>
<td>0.0941</td>
</tr>
<tr>
<td>PairCol</td>
<td>0.3493</td>
<td>0.3153</td>
<td>38.4364</td>
<td>0.8462</td>
<td>0.0889</td>
</tr>
<tr>
<td>PairNMF</td>
<td>0.1154</td>
<td>0.1963</td>
<td>15.8486</td>
<td>0.6865</td>
<td>0.0393</td>
</tr>
<tr>
<td>PairRec</td>
<td>0.0290</td>
<td>0.2330</td>
<td>3.6179</td>
<td>0.7105</td>
<td>0.0118</td>
</tr>
<tr>
<td>FlatNMF</td>
<td>0.2245</td>
<td>0.2900</td>
<td>26.1010</td>
<td>0.8475</td>
<td>0.0615</td>
</tr>
<tr>
<td>FlatRec</td>
<td>0.0613</td>
<td>0.3112</td>
<td>8.4858</td>
<td>0.8759</td>
<td>0.0254</td>
</tr>
</tbody>
</table>

FASCINATE performs best!
Parameter Studies

- Parameters: \(\alpha, \beta, r \)

\[
\min_{F_i \geq 0} J = \sum_{i,j: G(i,j) = 1} \| W_{i,j} \odot (D_{i,j} - F_i F_j') \|^2_F + \alpha \sum_i \text{tr}(F_i'(T_i - A_i) F_i) + \beta \sum_i \| F_i \|^2_F
\]

\((r: \text{rank of } F_i (i = 1, \ldots, g)) \)

Impact of \(\alpha \) and \(r \)
Impact of \(\beta \) and \(r \)
Impact of \(\alpha \) and \(\beta \)

FASCINATE is stable in wide range of parameter settings!
Effectiveness of FASCINATE-ZERO (Q2)

- FASCINATE-ZERO vs. FASCINATE

FASCINATE-ZERO: similar performance, faster speed!
Scalability

FASCINATE (Q1)
Linear

FASCINATE-ZERO (Q2)
Sub-linear
Roadmap

✓ ▪ Motivation
✓ ▪ Q1: Cross-layer Dependency Inference
✓ ▪ Q2: Dependencies for Zero-Start Nodes
✓ ▪ Evaluations
✓ ▪ Conclusions
Conclusions

- **Cross-Layer Dependency Inference**
 - **Key Ideas:**
 - Collective Collaborative Filtering + Node Homophily
 - Local Search (for zero-start nodes)
 - **Methods:** FASCINATE & FASCINATE-ZERO

- **Results**
 - **Effectiveness:** 8.2%-41.9% over best competitors
 - **Efficiency:** linear (FASCINATE), sublinear (FASCINATE-ZERO)

- **More in paper**
 - Variants
 - Convergence analysis & Effectiveness results

- **Code:** [http://www.public.asu.edu/~cchen211]