1.

A state diagram for the given DFA is provided below:

Step 1: Create the associated GNFA, depicted below:

Step 2: Remove q_0 to obtain the below state diagram:
Step 3: Remove q_1 to obtain the below state diagram, where:

1. $a = 0^*2 \cup (0^*1)(0 \cup 20^*1)^*(1 \cup 20^*2)$
2. $b = 0^* \cup (0^*1)(0 \cup 20^*1)^*(20^* \cup \varepsilon)$
3. $c = (10^*2 \cup 0)(10^*1 \cup 2)(0 \cup 20^*1)^*(1 \cup 20^*2)$
4. $d = (10)^* \cup (10^*1 \cup 2)(0 \cup 20^*1)^*(20^* \cup \varepsilon)$

Step 4: Remove q_2 to obtain:

Thus, the desired regular expression is given by $ac^*d \cup b$, or equivalently

$$0^*2 \cup (0^*1)(0 \cup 20^*1)^*(1 \cup 20^*2))((10^*2 \cup 0)(10^*1 \cup 2)(0 \cup 20^*1)^*(1 \cup 20^*2))^*((10)^* \cup (10^*1 \cup 2)(0 \cup 20^*1)^*(20^* \cup \varepsilon))$$

A state diagram of the given NFA is depicted below:

The equivalent DFA is depicted below. Note that my states have simplified names. For example state ‘135’ is just shorthand for $\{q_1, q_3, q_5\}$, state ‘35’ is short for $\{q_3, q_5\}$, etc.
3.

Step 1: Create the associated GNFA, depicted below:
Step 2: Remove q_0 to obtain:

Step 3: Remove q_1 to obtain:

Step 4: Remove q_2 to obtain:
Step 5: Remove q_3 to obtain the following state diagram, where
\[a = (00 \cup \varepsilon)(100 \cup 1)^* (1 \cup \varepsilon) \quad \text{and} \quad b = (00 \cup \varepsilon)(100 \cup 1)^* (1) \cup \varepsilon: \]

Step 6: Remove q_4 to obtain:

Step 7: Remove q_5 to obtain:

Hence, the regular expression associated with the given NFA is
\[
(a11 \cup a)(011 \cup 0)^* b = ((00 \cup \varepsilon)(100 \cup 1)^* (1 \cup \varepsilon))(11 \cup (00 \cup \varepsilon)(100 \cup 1)^* (1 \cup \varepsilon)) (111 \cup 0)^* \cup ((00 \cup \varepsilon)(100 \cup 1)^* (1) \cup \varepsilon)
\]

4(a)

The problem statement is true. L is regular, and thus it is recognized by a DFA. Call this DFA $D = (Q, \Sigma, \delta, q_0, F)$. I will build an NFA, N, to recognize half(L). Let $N = (Q', \Sigma, \delta', q'_0, F')$. I define each of the components of N below.

1. $Q' - \{q'_0\} = \{(q, \text{parity}) \mid q \in Q, \text{parity} \in \{\text{even}, \text{odd}, \text{oddLast}\}\}$.

2.1 $\delta'(q'_0, c) = \{(q_0, \text{EorO}) \mid \text{EorO} \in \{\text{even}, \text{odd}\}\}$.

2.1. $\delta'((q, \text{odd}), a) = \{(q^*, \text{odd}) \mid q^* = \delta(\delta(q, c), a) \text{ for arbitrary } a, c \in \Sigma\} \cup \{(q^{**}, \text{oddLast}) \mid q^{**} = \delta(\delta(q, b), a), c) \text{ for arbitrary } a, b, c \in \Sigma\}.

2.2. $\delta'((q, \text{even}), a) = \{(q^*, \text{even}) \mid q^* = \delta(\delta(q, c), a) \text{ for arbitrary } a, c \in \Sigma\}.$
2.3. $\delta'(q, \text{oddLast}, a) = \emptyset$ for all $a \in \Sigma$.

3. $F' = \{(q_F, \text{parity}) \mid q_F \in F, \text{parity} \in \{\text{odd, even, oddLast}\}\}$.

The idea behind N is that it presupposes that the input string w that it is fed is the ‘half’ of some string in L. As such, N attempts to nondeterministically ‘fill in the gaps’, as it were, between the characters of w such that the resulting ‘filled out’ string is a string in L. Now, the ‘filled in’ conjugate of the input given to N may either be of odd or even length. That is, if $w = w_1 \ldots w_n$, with $n \geq 1$, then N guesses whether the ‘filled out’ conjugate of w in L is either of the form ‘? w_1? w_2?…? w_n?’ or of the form ‘? w_1? w_2?…? w_n’, and it attempts to replace the ‘?’s with distinct characters in Σ such that the resulting string is in L. If the conjugate is of the former type, then it is of odd length, and so an accepting computation of input w will consist in N being driven through states of the form (q, odd), during which N simulates the computation of all possible conjugates of w on the DFA D. At every point when N consumes a character of such an input, it either guesses that the character is the very last one in w or it guesses that it is not the last character in w. If N guesses the former, then it must also guess the state to which the simulation of D is driven when an arbitrary odd-position character immediately following the current input character in the hypothetical conjugate string is also consumed; that is, the character ‘guessed’ by N to be the very last character in the conjugate of w in L. If the guess is incorrect; viz., that the current input character is not the last character of w, then that particular computation branch dies, since there are no transition arrows exiting any state of the form $(q, \text{oddLast})$.

However, if the conjugate is of even length, then an accepting computation of w will consist in N being driven through states of the form (q, even), during which N simulates the computations of all possible conjugates of w on the DFA D. Given that the conjugate string in L is even, it follows that the last character of w is also the last character of this conjugate, and thus we don’t require N to do any last-character guessing of the sort done in the event that the conjugate is of odd length.

If any such conjugate exists for the input, then N will accept its input, and if no such conjugate exists, then N will reject its input. That is, if there exists some string x in L satisfying half(x) = w, then N accepts the string. On the other hand, if there does not exist a string x in L satisfying half(x) = w, then w is rejected by N. (The latter holds simply because N has attempted every single possible ‘filling out’ of w, and if every such attempt yields a conjugate which isn’t in L, then w can’t possibly be the ‘half’ of any string in L). Combining these two statements, it follows that N accepts w if and only if w is ‘half’ of some string x in L. Thus, N recognizes the language half(L) and we conclude that half(L) is regular.
4(b)

Consider the language $L = (10)^n(00)^n$. Then $\text{half}(L) = \{x \in 0^+ \mid \#_0(x) \mod 2 = 0\}$. Then $\text{half}(L) = (00)^+$. Since it is described by a regular expression, it must be regular.

Next, I prove that L is non-regular. Supposing that it is regular, the string $s = (10)^p(00)^p$, with p the associated pumping length, satisfies $|s| \geq p$. So there must exist a splitting of s into three components $s = xyz$, with $|xy| \leq p$, $|y| > 0$, and $xy^iz \in L$ with $i \in \mathbb{N}$. This implies that $xy^2z \in L$. Let's consider y's general forms:

1. y contains 01 as a prefix and 1 as a suffix.
2. y contains 01 as a prefix and 0 as a suffix.
3. y contains 10 as a prefix and 1 as a suffix.
4. y contains 10 as a prefix and 0 as a suffix.
5. $y = 0$.
6. $y = 1$.

If case 1 holds, then the number of initial 10 substrings comprising xy^2z exceeds the number of double 0’s following the last occurrence of substring 10 in xy^2z. If case 2 holds, then $xy^2z = \alpha 001\beta$, and thus cannot possibly be of the form $(10)^n(00)^n$. If case 3 holds, then $xy^2z = \alpha' 110\beta'$, and thus cannot possibly be of the form $(10)^n(00)^n$. If case 4 holds, then the number of initial 10's comprising xy^2z is strictly greater than the number of double 0's following the last occurrence of substring 10 in xy^2z. If case 5 holds, then either $xy^2z = \alpha^* 1001\beta^*$ (which cannot possibly be of the form $(10)^n(00)^n$) or y is the suffix of the last 10 in xyz. If the latter holds, then the number of 0's following the last appearance of 10 in xy^2z is of odd parity. If case 6 holds, then $xy^2z = \alpha'' 11\beta''$, which isn’t even of the correct format for strings in L.