
CSE355 Homework Three Sample Solutions

Question 1

Let Σ = {0, 1}. A string w ∈ Σ? of length n = |w| is called sparse if every two 1s in the string have at least
dlog2 ne 0s between them. Let LS ⊆ Σ? be the language of sparse strings. Show that LS is not regular.

Suppose (to the contrary) L is regular: then by the Pumping Lemma for Regular Languages, there is a
pumping length ` for LS . Choose any p ≥ ` + 4.1 Choose the string w = 102

p−p−310p1 (I’ll explain how I
obtained this string below). We have that |w| ≥ p, and w ∈ L because |w| = 2p, and log2(2p) = p, and all
pairs of 1’s are separated by at least p 0’s. We want to show that for any decomposition of w into uvx, there
is a way to pump so as to leave the language. Note that we have the following cases:

• u = ε, v = 10α, x = 02
p−p−3−α10p1 (with α ≥ 0). We are justified here to say v does not include

the second 1 because we chose p to be large enough. Choose i = 2: uv2x = 10α10α02
p−p−3−α10p1 =

10α102
p−p−310p1. Since |v| ≥ 1, we have that |uv2x| ≥ 2p + 1. Since α ≤ p (it’s actually ≤ p− 1), and

p < dlog2(2p + 1)e, we have that uv2x /∈ L. We actually get the same conclusion if we considered the
third “run” of 0’s at the end of uv2x.

• u = 10α, v = 0β , x = 02
p−p−3−α−β10p1. We can just analyze this case just on string length. If we

choose any i ≥ 2, then we will add at least one more 0 in the first “set” of 0’s. Then the length of the
string will be ≥ 2p + 1. And so each “set” of 0’s must have length ≥ dlog2(2p + 1)e > p. We get a
contradiction because we have a set of 0’s of length p (the second set).

Since we have exhausted all the cases, and found a contradiction in each, LS is not regular.
So how did I find this string? A common technique for using the Pumping Lemma is to get “as close”

to, or “match,” a requirement (i.e., be in the language) as possible, then choosing a value of i to make the
contradiction happen. In this case, I wanted a certain substring of 0’s that has exactly dlog2(n)e 0’s in length,
and then choose a value of i for which the value of dlog2(n)e is bigger, but have this considered substring
be unmodified, giving us the contradiction. Note, we don’t want to pump this set of 0’s, because we would
make the analysis much more difficult (or might not even work).

A good strategy from this discussion (which will eventually give us w above) then is to look at the string
10c10p1 (where p is the pumping length from before); we want to find the value of c such that p = log2(n)
exactly, but at the same time guarantee that c is large enough so that the 0p substring at the end is
unmodified. We can accomplish both of these simultaneously: since the length of this string is 3 + p+ c, we
want to have that p = log2(3 + p+ c). Exponentiating (with base 2) both sides gives 2p = 3 + p+ c. Solving
for c gives c = 2p − p− 3, as was done in the proof.

Questions for thought:

1. What if instead of having every two 1s in the string, we only had the dlog2 ne requirement on at least
k pairs of 1s (for a fixed k)? Are there any cases where this is regular?

2. Instead of having at least dlog2 ne 0’s between every pair of 1s, we had at most this number?

3. Is LS context-free?

1The reason for this is subtle. It may happen that ` is small, which makes the number of in which case 2` − ` − 3 is small
(say, less than `). Performing algebraic manipulation and approximating the result shows that in order to avoid the scenario
of 2` − ` − 3 < `, we have that ` ≥ 4 (it’s actually is ≈ 3.247, but ` has to be an integer). So we just add 4 to ` to avoid this
degenerate case if ` happened to be small.

1

Question 2

Let Σ = {0, 1}. A string w ∈ Σ? is called prefix-dense if every prefix of w contains at least twice as many 1s
as 0s. Let LP ⊆ Σ? be the language of prefix-dense strings.

Question 2a

Show that LP is not regular.
Suppose (to the contrary) that LP were regular. Then there is a pumping length p for LP . Choose

w = 12p0p - it has length at least p and is in LP because every prefix has at least twice as many 1’s as 0’s.
Since |uv| ≤ p, we can write u = 1α, v = 1β , x = 12p−α−β0p. Choose i = 0: ux = 12p−β0p. Since β ≥ 1, there
is a prefix (i.e., the entire string) that has fewer than twice as many 1s as 0s. Therefore, since ux /∈ LP , LP
is not regular.

Question 2b

Show that LP is context-free.
We construct a CFG for LP :

S → ε | S1S | S1S1S0S

This does not produce any strings that are not in LP : The first rule is valid because ε has no 1’s or 0’s,
so their counts are in the correct ratio. Inserting a 1 into any valid string cannot make it invalid, as every
prefix has either the same counts as before, or else an additional 1 and no additional 0’s, so the second rule
is also valid. The last rule matches every 0 with two earlier 1’s, ensuring that the number of 0’s in a prefix
never exceeds half the number of 1’s, as required. Finally, the positions of the S’s on the right-hand sides
are all permissible because inserting a prefix-dense string into another always yields a prefix-dense string.

This does produce all strings in LP : Given a prefix-dense string, each 0 can be matched off with two
earlier 1’s (making use of the third case) without reusing any 1’s, or else the prefix ending with that 0 would
have less than twice as many 1’s as 0’s. Then any additional 1’s are taken care of by the second case. Finally,
all the superfluous S’s are replaced by ε.

Question 3

Let X be the language {anbma`b`ambn : n,m, ` ≥ 0}.

Question 3a

Show that X is not regular. Suppose (to the contrary) that X is regular. Then X has a pumping length
p. Choose the string w = apbpapbpapbp. It certainly has length at least p, and is in the language by setting
n = m = ` = p. Since |uv| ≤ p, we have that u = aα, v = aβ , x = ap−α−βbpapbpap. Choosing i = 2 gives the
string uv2x = ap+βbpapbpapbp. The only way that this string is in X is if β = 0 (to match the first set of a’s
with the last set of b’s), which is a contradiction. Therefore, X is not regular.

Question 3b

Show that X is context-free. This goes off of the simple idea of the CFG for {0n1n : n ≥ 0}: S → 0S1 | ε.
We can use a similar rule to match the first set of a’s with the last set of b’s, then have a rule that proceeds
to a new variable to work on the first set of b’s and the last set of a’s. And finally, we can match the inner
a’s and b’s:

S → aSb | A
A→ bAa | B
B → aBb | ε

2

We can use this grammar because there is no dependence between n,m, `. Question for thought: if we
instead considered the language {anbmanbmambn : n,m ≥ 0}, can you make a CFG for this language? How
about {anbmanbnambn : n,m ≥ 0}?

Question 4

Let L be a context-free language generated by the context-free grammar G. Let L′ be the language that
contains exactly the strings that both belong to L and have length a multiple of 3. Show that L′ must be
context-free by devising and describing a method for producing a context-free grammar for L′ starting with
the grammar G.

We form G′ from G as follows. The variables consist of V0, V1, and V2 for each variable V of G. The
start variable is S0, where S is the start variable of G. Finally, for each rule of G, let V be the variable on
the left-hand side. For each variable W appearing on the right-hand side, consider replacing it with each of
W0, W1, and W2 in turn, where the choice is made independently for each such variable. For each resulting
right-hand side, we count the number of terminals and add all the variables’ subscripts; call the total t. Then
we add a rule to G′ with that right-hand side and with Vt (mod 3) on the left-hand side. For example, if the
right-hand side is ε, the rule added will be V0 → ε.

The resulting grammar keeps track of the number of terminals (mod 3) to which a variable is permitted to
expand, so that any string in its language must have a length of 0 (mod 3). The rules allow distributing the
terminals between the variables on the right-hand side in any manner that is consistent with the remainder
specified on the left-hand side. For any allowed length, the strings that are produced are the same as L. As
a result, it contains all and only the strings of L′.

3

