CSE 355 HOMEWORK SIX SKETCHY SOLUTIONS

NOT TO BE HANDED IN

Here are some sample questions on the material at the end of the course.

(1)
(2)

Sipser 3.10. Answered in Sipser text.

Sipser 3.14. To convert a TM to a queue automaton, the idea is that we add a new
symbol # that is at the end of the nonblank portion of the tape. Then when the tape
contains wi - - - wj—1w; - - - wp,# and the tape head is pointing at w;, we represent this as
queue w; - - - wpFwy - - w;—1. We extend the queue alphabet so that for every symbol there
is a dotted and a double dotted version; the position of the TM tape head is also indicated
by single dotting the symbol under it.

We remember the state of the TM (along with other things) in the state of the QA.

To simulate the TM computation, it is enough to simulate a single transition of the TM.
By pulling and pushing the same symbol until we pull a singly dotted symbol, we can locate
the entry under the TM tape head. If it is a # with a dot, we push a blank with a dot
followed by a # without a dot and locate the dotted symbol again. Then we know what
transition the TM does. We can remember the new state of the TM in the QA state. We
can push the symbol written on the TM tape, but double dot it. Now we just have to move
the tape head either left or right one position. The “trick” is to pull twice, remembering
the last two pulls (a,b) in the state. When the next pull, say for ¢, is done, we push a and
remember (b, c). Keep going until the second symbol remembered, b, is double dotted. If
we want to move left, push a single dotted and push b undotted, and push c. If instead we
want to move right, we push a then b undotted and then ¢ dotted. Now we are ready again
to find the dot and carry out the next transition.

To convert a QA to a TM, store the queue contents on the tape in reverse order. Mark
the first and last nonblank symbols so that you can find them. To push a symbol, it will
add a symbol just after the marker at the end of the tape (and move the marker). To pull a
symbol, it gets the symbol at the left hand marker and marks the next symbol to the right
as the new marker of the beginning ot the tape. (This will cause the queue contents to shift
right along the tape as you push and pull, but do not worry — we have lots of tape).
Sipser 3.15. For (a), solved in Sipser.

For (b), use the fact that there is a nondeterministic TM decider if and only if there is a

deterministic TM decider. To make an NTM decider, nondeterministically split the string

in two parts, run the decider for the first language on the first part and the second decider

on the second part. If both accept, accept. Otherwise reject.

For (c) use nondeterminism to split the string into an arbitrary number of nonempty parts

(for example, by placing a mark on the first character of each part). Run the decider for L

on each part and if all accept, accept. Otherwise reject.

For (d) SWap {Gaccept and Qreject -

For (e), run the deciders for both languages on the input, and accept if both do. Otherwise

reject.

Sipser 3.16. For (a), solved in Sipser.

For (b), use the fact that there is a nondeterministic TM recognizer if and only if there

is a deterministic TM recognizer. To make an NTM recognizer, nondeterministically split
1



(11)

the string in two parts, run the recognizer for the first language on the first part and if it
accepts then run the second recognizer on the second part. If the second accepts, accept.
For (c) use nondeterminism to split the string into an arbitrary number of nonempty parts
(for example, by placing a mark on the first character of each part). Run the recognizer for
L on each part and if all accept, accept.
For (d), run the recognizers for both languages on the input, and accept if both do.
For (e), we did not discuss this.
Sipser 4.11. Convert the PDA to a CFG in Chomsky normal form (we have algorithms to
do this). Next determine which variables have the property that they derive at least one
string that contains only terminals (we saw this in class). Delete all variables that do not
make strings of terminals. Now determine which variables can be produced in a derivation
from the start variable S (the idea is the same as we just used). Delete all variables than
cannot be in a derivation starting from S. Now if any variable A has the property that it
derives, in one or more steps, a string of variables and terminals that contains A on the
RHS, answer “yes, the language is infinite.” If no such variable exists, answer “no, the
language is not infinite.”
Sipser 4.14. Answered in Sipser text.
Sipser 4.21. One way to do this is to construct from the DFA M another DFA R so that
w € L(M) if and only if w® € L(R). This is closure of the regular languages under reversal,
which can be shown (for example) by reversing a regular expression for the language in a
straightforward way. Now we use the product construction to make a DFA T whose language
is L(M)UL(R). And now we present (M, T) to EQpra, which we know is decidable. If the
answer is yes, then the reverse of every string in L(M) must also be in L(M). If the answer
is no, the reversal of some string in L(M) is not in L(M). So the answer from EQpra is
the answer to the question.
Sipser 4.24. Let Uppa = {(P) : P is a PDA that has useless states}. By discussions in
class, we know that the emptiness problem Eppy4 is decidable. Let D be a decider for it.
To decide Upp 4, use the following:
T = “On input (P) where P is a PDA:
1. For each ¢ € Q:
a. Modify P such that F' = {q}.
b. Run D (decider for Eppa) on input (P). If D accepts, accept (P).
2. Reject (P).”

Because Epp4 is decidable, Upp 4 is decidable.
Sipser 5.9. This is a nontrivial property of the language of a TM, because some TMs have
languages with this property (e.g., ¥*) and some do not (e.g. {ab}). So Rice’s theorem tells
us that this is undecidable.
Sipser 5.12. Let M be a TM. Modify M so that whenever it writes a blank, we write a
newblank instead. Transitions on newblank are copies of those reading blanks. Now change
all occurrences of Guccept t0 Queird, @ new state. Add transitions from qyeirq that write blanks
(not newblanks) and move left. Call the new machine M’. Then M accepts its input if
and only if M’ writes a blank symbol on top of a nonblank one. This reduces Arys to the
problem asked.
Sipser 5.28. Answered in Sipser text.



