1. Question 1.

Let $G = (V, E)$ be a directed graph. For two vertices $x, y \in V$, the distance from x to y, $\text{dist}(x, y)$, is the length of a shortest directed path starting at x and ending at y. (Recall that paths cannot repeat vertices or edges.) The diameter of G, $\text{diam}(G)$, is $\max_{x, y \in V} \text{dist}(x, y)$. A spanning subdigraph of G is a directed graph $H = (W, F)$ with $V = W$ and $E \supseteq F$.

- Show that $\text{Fat} = \{ (G, k) : G$ has a spanning subdigraph H with $\text{diam}(H) \leq k \}$ is NL-complete.
- Show that $\text{Obese} = \{ (G) : G$ has a spanning subdigraph H with $\text{diam}(H) \leq 2 \}$ is in $L = \text{SPACE}(\log n)$.

2. Question 2.

Let $G = (V, E)$ be an undirected graph. For two vertices $x, y \in V$, the distance from x to y, $\text{dist}(x, y)$, is the length of a shortest path starting at x and ending at y. (Recall that paths cannot repeat vertices or edges.) The diameter of G, $\text{diam}(G)$, is $\max_{x, y \in V} \text{dist}(x, y)$.

- Show that $\text{Thin} = \{ (G, k) : G$ has a spanning connected subgraph H with $\text{diam}(H) \geq k \}$ is NP-complete.
- Show that when G is an n-vertex graph, we can decide whether G has a spanning connected subgraph H with $\text{diam}(H) \geq k$ in time $n^{O(k)}$. Explain why this does not contradict your conclusion about the NP-completeness.
3. **Question 3.**

Let’s play a game, Friendship. There is a graph G in which the vertices have been partitioned into 4ℓ disjoint sets, $(X_i, Y_i : 1 \leq i \leq 2\ell)$. Two players, Constructo and Disrupto, alternate taking turns; Constructo starts. At turn i for $1 \leq i \leq \ell$, Constructo deletes either all vertices in X_{2i-1} or all vertices in Y_{2i-1}. Then Disrupto deletes either all vertices in X_{2i} or all vertices in Y_{2i}. Constructo wins at the end if there remains a clique of size 2ℓ; otherwise Disrupto wins. Show that $\text{Friendship} = \{\langle G, (X_i, Y_i : 1 \leq i \leq 2\ell) \rangle : \text{Constructo wins}\}$ is PSPACE-complete.

4. **Question 4.**

- Using the pattern that we have seen for defining NL-, NP-, and PSPACE-completeness, carefully define EXPTIME-completeness.
- Show that $A_{TM, lim} = \{\langle M, w, k \rangle : M$ is a TM that accepts w within at most k steps\}$ is EXPTIME-complete. (Note that k is input in binary.)

5. **Question 5.**

An oedipal Turing machine is a TM M for which $L(M) = \{\langle M' \rangle : M'$ is a TM with $\langle M \rangle \in L(M')\}$.

(a) Show that an oedipal TM exists.

(b) Determine whether or not the language of (encodings of) oedipal Turing-machines is Turing-recognizable. Also determine whether or not the language of (encodings of) oedipal Turing-machines is co-Turing-recognizable.

Explain carefully.

6. **Question 6.**

Let $U = \{0, 1\}^\star$. For a string $w \in U$, write $w = w_1 \cdots w_\ell$ with $w_i \in \{0, 1\}$ for $1 \leq i \leq \ell = |w|$. Define the relation $AltDen = \{(x, y, w) : |x| = |y| = |w|$ and $x_i \uparrow y_i = w_i$ when $1 \leq i \leq |w|\}$. (Here $0 \uparrow 0 = 0 \uparrow 1 = 1 \uparrow 0 = 1$ and $1 \uparrow 1 = 0$.) Write $(x, y, w) \in AltDen$ as $x \uparrow y = w$. We consider the theory of U with \uparrow.

(a) Show that $x = y; x \lor y = z$ (“or”), and $x \land y = z$ (“and”), are definable in this theory.

(b) Show that the theory of U with \uparrow is decidable.

(c) Using the decidability of the theory, show in detail whether the statement $\forall x \forall y \forall z [(x \lor y) \land z = (x \land z) \lor (y \land z)]$ holds.

7. **Question 7.**

Let $\text{MINOR}_{NFA} = \{\langle M \rangle : M$ is an NFA with $L(M) \subseteq \{0, 1\}^\star$ for which $L(M)$ contains fewer than half the strings in $\{0, 1\}^n$ for every $n \geq 0\}$. Show that MINOR_{NFA} is NP-hard.
(a) Suppose that A is a regular language. Must $A^* \in \text{SPACE}(\log n)$? Explain.

(b) Suppose that $B \in \text{SPACE}(\log n)$. Must B be context-free? Explain.

(c) Suppose that $C \in \text{SPACE}(\log n)$. Let $RC(C)$ be the closure of C under the regular operations. Must $RC(C) \in \text{NL}$? Explain.