Table for CAN(3,k,15) for k up to 10000

Last Updated Fri Jun 1 09:23:58 MST 2018

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;3,k,15) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
kNSource
63375orthogonal array (Ji-Yin)
73870orthogonal array fuse postop NCK
83971orthogonal array fuse postop NCK
94017orthogonal array fuse postop NCK
104024orthogonal array fuse postop NCK
114033orthogonal array fuse postop NCK
124050orthogonal array fuse postop NCK
134058orthogonal array fuse postop NCK
144068orthogonal array fuse postop NCK
154070orthogonal array fuse postop NCK
164072orthogonal array fuse postop NCK
184087orthogonal array fuse postop NCK
196415orthogonal array fuse fuse fuse fuse postop NCK
206459orthogonal array fuse fuse fuse fuse postop NCK
227460perfect hash family2,34,18T12
247550Chateauneuf-Kreher doubling
267572Chateauneuf-Kreher doubling
287582Chateauneuf-Kreher doubling
307584Chateauneuf-Kreher doubling
327600Chateauneuf-Kreher doubling
347615Chateauneuf-Kreher doubling
367657Chateauneuf-Kreher doubling
2438174SCPHF LFSR (TJ-IM) fuse
2738189Raaphorst-Moura-Stevens fuse
2759805SCPHF LFSR (TJ-IM) fuse fuse
3079821Raaphorst-Moura-Stevens fuse fuse
31312254SCPHF Conditional Expectation (CLS) fuse
34012284CPHF Sim Annealing (TJ-IM) fuse
34513691SCPHF LFSR (TJ-IM) fuse fuse fuse fuse
38113709Raaphorst-Moura-Stevens fuse fuse fuse fuse
47614838Chateauneuf-Kreher doubling
48614852Chateauneuf-Kreher doubling
54414867Chateauneuf-Kreher doubling
54614881Chateauneuf-Kreher doubling
70615854Path-Restricted SCPHF RE (CLS) fuse
83216094Path-Restricted SCPHF RE (CLS) fuse
109716334SCPHF Conditional Expectation (CLS) fuse
111516379CPHF Random Extension (CLS) fuse
121618015Cohen-Colbourn-Ling
135118030Cohen-Colbourn-Ling
136618044Cohen-Colbourn-Ling
145818267Cohen-Colbourn-Ling
163818282Cohen-Colbourn-Ling
166719219Cohen-Colbourn-Ling
175219235Cohen-Colbourn-Ling
191119257Cohen-Colbourn-Ling
194419343Cohen-Colbourn-Ling
218419358Cohen-Colbourn-Ling
218719389Cohen-Colbourn-Ling
243019396Cohen-Colbourn-Ling
245719404Cohen-Colbourn-Ling
267319405Cohen-Colbourn-Ling
273019411Cohen-Colbourn-Ling
300319420Cohen-Colbourn-Ling
315919430Cohen-Colbourn-Ling
327619437Cohen-Colbourn-Ling
340219440Cohen-Colbourn-Ling
364519442Cohen-Colbourn-Ling
388819444Cohen-Colbourn-Ling
409519457Cohen-Colbourn-Ling
436819459Cohen-Colbourn-Ling
437019483Cohen-Colbourn-Ling fuse
459119666Cohen-Colbourn-Ling
464219682Cohen-Colbourn-Ling
491419954Cohen-Colbourn-Ling
522021346Cohen-Colbourn-Ling
552622306Cohen-Colbourn-Ling
562023534Path-Restricted SCPHF RE (CLS) fuse
662923774Path-Restricted SCPHF RE (CLS) fuse
791024014Path-Restricted SCPHF RE (CLS) fuse
910224254Path-Restricted SCPHF RE (CLS) fuse
1000024494SCPHF Random Extension (CLS) fuse
 Graph: