Table for CAN(3,k,15) for k up to 10000

Last Updated Sun Nov 19 06:55:29 MST 2017

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;3,k,15) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
kNSource
63375orthogonal array (Ji-Yin)
73870orthogonal array fuse postop NCK
83971orthogonal array fuse postop NCK
94017orthogonal array fuse postop NCK
104024orthogonal array fuse postop NCK
114033orthogonal array fuse postop NCK
124050orthogonal array fuse postop NCK
134058orthogonal array fuse postop NCK
144068orthogonal array fuse postop NCK
154070orthogonal array fuse postop NCK
164072orthogonal array fuse postop NCK
184087orthogonal array fuse postop NCK
196415orthogonal array fuse fuse fuse fuse postop NCK
206459orthogonal array fuse fuse fuse fuse postop NCK
227460perfect hash family2,34,18T12
247564Chateauneuf-Kreher doubling
267572Chateauneuf-Kreher doubling
287582Chateauneuf-Kreher doubling
307598Chateauneuf-Kreher doubling
327600Chateauneuf-Kreher doubling
347615Chateauneuf-Kreher doubling
367657Chateauneuf-Kreher doubling
2418174Raaphorst-Moura-Stevens truncate fuse
2738189Raaphorst-Moura-Stevens fuse
3079821Raaphorst-Moura-Stevens fuse fuse
31312254SCPHF Conditional Expectation (CLS) fuse
31712284CPHF Random Extension (CLS) fuse
32412732Cohen-Colbourn-Ling
34313691Raaphorst-Moura-Stevens truncate fuse fuse fuse fuse
38113709Raaphorst-Moura-Stevens fuse fuse fuse fuse
44814838Chateauneuf-Kreher doubling
48214852Chateauneuf-Kreher doubling
54414867Chateauneuf-Kreher doubling
54614881Chateauneuf-Kreher doubling
70615854Path-Restricted SCPHF RE (CLS) fuse
83216094Path-Restricted SCPHF RE (CLS) fuse
109716334SCPHF Conditional Expectation (CLS) fuse
111516379CPHF Random Extension (CLS) fuse
120618015Cohen-Colbourn-Ling
135118030Cohen-Colbourn-Ling
136618044Cohen-Colbourn-Ling
144618267Cohen-Colbourn-Ling
163818282Cohen-Colbourn-Ling
166719219Cohen-Colbourn-Ling
175219235Cohen-Colbourn-Ling
191119257Cohen-Colbourn-Ling
192819343Cohen-Colbourn-Ling
218419358Cohen-Colbourn-Ling
241019396Cohen-Colbourn-Ling
245719404Cohen-Colbourn-Ling
265119405Cohen-Colbourn-Ling
273019411Cohen-Colbourn-Ling
300319420Cohen-Colbourn-Ling
313319430Cohen-Colbourn-Ling
327619437Cohen-Colbourn-Ling
337419440Cohen-Colbourn-Ling
361519442Cohen-Colbourn-Ling
385619444Cohen-Colbourn-Ling
409519457Cohen-Colbourn-Ling
436819459Cohen-Colbourn-Ling
437019483Cohen-Colbourn-Ling fuse
459119666Cohen-Colbourn-Ling
464219682Cohen-Colbourn-Ling
491419954Cohen-Colbourn-Ling
522021346Cohen-Colbourn-Ling
552622306Cohen-Colbourn-Ling
562023534Path-Restricted SCPHF RE (CLS) fuse
662923774Path-Restricted SCPHF RE (CLS) fuse
791024014Path-Restricted SCPHF RE (CLS) fuse
910224254Path-Restricted SCPHF RE (CLS) fuse
1000024494SCPHF Random Extension (CLS) fuse
 Graph: