Table for CAN(3,k,2) for k up to 10000

Last Updated Fri Sep 15 01:04:21 MST 2017

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;3,k,2) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: + or go to Global Menu.
48orthogonal array
510Derive from strength 4
1112Derive from strength 4
1215tabu search (Nurmela)
1617Derive from strength 4
2018Chateauneuf-Kreher doubling
2219Chateauneuf-Kreher doubling
2320simulated annealing (TJ-RT)
2521simulated annealing (TJ-RT)
2622simulated annealing (TJ-RT)
3023simulated annealing (TJ-RT)
3824simulated annealing (TJ-RT)
4425simulated annealing (TJ-RT)
4626simulated annealing (TJ-RT)
4927simulated annealing (TJ-RT)
5228simulated annealing (TJ-RT)
6831simulated annealing (TJ-RT)
8832Power CT11^2,T3c
12133Power CT11^2
12335simulated annealing (TJ-RT)
12736simulated annealing (TJ-RT)
14037simulated annealing (TJ-RT)
14239SBSTT (TJ-AG)
14640SBSTT (TJ-AG)
16341SBSTT (TJ-AG)
18042SBSTT (TJ-AG)
24243simulated annealing (TJ-RT)
24344simulated annealing (TJ-RT)
24645simulated annealing (TJ-RT)
25646simulated annealing (TJ-RT)
26247simulated annealing (TJ-RT)
28048simulated annealing (TJ-RT)
35249Power CT11^3T7T3c
48450Power CT11^3,T7c
60552Power CT11^3,T6c
70453Power CT11^3T3T3c
96854Power CT11^3,T3c
133155Power CT11^3
133259Add a factor
145261Power CT12^3,cT1T1
158464Power CT12^3,cT1
171266simulated annealing (TJ-RT)
193667Power CT11^4T7T7c
266268Power CT11^4,cT9c
281670Power CT11^4T3cT3cT7c
387271Power CT11^4T7T3c
532472Power CT11^4,T7c
665574Power CT11^4,T6c
774475Power CT11^4T3T3c
1000076Power CT11^4,T3c