Table for CAN(3,k,6) for k up to 10000

Last Updated Sun Nov 19 06:55:29 MST 2017

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;3,k,6) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
kNSource
4216Derive from strength 4
5240cross-sum (CKRS)
6258cross-sum (CKRS)
7290Torres Jimenez
8301Torres Jimenez
9361Torres Jimenez
10380Torres Jimenez
11420Torres Jimenez
12463Chateauneuf-Kreher doubling
13490Torres Jimenez
14498Chateauneuf-Kreher doubling postop NCK
15506Chateauneuf-Kreher doubling postop NCK
16510Chateauneuf-Kreher doubling postop NCK
17549Torres Jimenez
18591Torres Jimenez
20620Chateauneuf-Kreher doubling
104624Cyclotomy (Colbourn)
122726Cyclotomy (Torres-Jimenez)
128762Cyclotomy (Colbourn)
152906Cyclotomy (Colbourn)
164978Cyclotomy (Colbourn)
1701020Cyclotomy (Torres-Jimenez)
1721049Chateauneuf-Kreher doubling
1781054Chateauneuf-Kreher doubling
1881059Chateauneuf-Kreher doubling
2001064Chateauneuf-Kreher doubling
2041069Chateauneuf-Kreher doubling
2081074Chateauneuf-Kreher doubling
2201176Chateauneuf-Kreher doubling
2381181Chateauneuf-Kreher doubling
2441186Chateauneuf-Kreher doubling
2561222Chateauneuf-Kreher doubling
2641270Cohen-Colbourn-Ling
2681276Cohen-Colbourn-Ling
2721282Cohen-Colbourn-Ling
2961286Cohen-Colbourn-Ling
3161306Cohen-Colbourn-Ling
3441318Cohen-Colbourn-Ling
3561330Cohen-Colbourn-Ling
3721336Cohen-Colbourn-Ling
3921342Cohen-Colbourn-Ling
4041348Cohen-Colbourn-Ling
4161350Cohen-Colbourn-Ling
4241370Cohen-Colbourn-Ling
5041405Cohen-Colbourn-Ling
5201422Cohen-Colbourn-Ling
5521427Cohen-Colbourn-Ling
6241440Cohen-Colbourn-Ling
6641463Cohen-Colbourn-Ling
7281488Cohen-Colbourn-Ling
8321499Cohen-Colbourn-Ling
8541616Cohen-Colbourn-Ling
9761627Cohen-Colbourn-Ling
9921663Cohen-Colbourn-Ling
10241670Cohen-Colbourn-Ling
10401690Cohen-Colbourn-Ling
10981773Cohen-Colbourn-Ling
11441778Cohen-Colbourn-Ling
12201792Cohen-Colbourn-Ling
12401828Cohen-Colbourn-Ling
12801836Cohen-Colbourn-Ling
18551869perfect hash family3,1855,104
18562049Add a factor
18682056Cohen-Colbourn-Ling
18722061Cohen-Colbourn-Ling
19522066Cohen-Colbourn-Ling
24922073perfect hash family3,2906,122T18
26002145perfect hash family3,3125,125T21
27882169Cohen-Colbourn-Ling
29072175perfect hash family3,2978,123S3
29642182Cohen-Colbourn-Ling
30082195Cohen-Colbourn-Ling
30522208Cohen-Colbourn-Ling
30962221Cohen-Colbourn-Ling
35602226Cohen-Colbourn-Ling
40082240Cohen-Colbourn-Ling
42642254Cohen-Colbourn-Ling
43282268Cohen-Colbourn-Ling
43922282Cohen-Colbourn-Ling
44562296Cohen-Colbourn-Ling
45842310Cohen-Colbourn-Ling
49842311Cohen-Colbourn-Ling
53042326Cohen-Colbourn-Ling
53842341Cohen-Colbourn-Ling
54642356Cohen-Colbourn-Ling
57202366Cohen-Colbourn-Ling
64482382Cohen-Colbourn-Ling
68642398Cohen-Colbourn-Ling
69682414Cohen-Colbourn-Ling
70722430Cohen-Colbourn-Ling
71762446Cohen-Colbourn-Ling
73842462Cohen-Colbourn-Ling
75922478Cohen-Colbourn-Ling
100002492Power CT100^2
 Graph: