Table for CAN(5,k,2) for k up to 10000

Last Updated Fri Sep 15 07:41:46 MST 2017

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,2) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: + or go to Global Menu.
kNSource
632orthogonal array
742Special (Yan Jun)
852Steiner system (CKRS)
954Steiner system (CKRS)
1056Steiner system (CKRS)
1464cross-sum (CKRS)
1579simulated annealing (Torres-Jimenez)
1698SBSTT (TJ-AG)
2099SBSTT (TJ-AG)
21109SBSTT (TJ-AG)
22111SBSTT (TJ-AG)
23114SBSTT (TJ-AG)
24117SBSTT (TJ-AG)
25118SBSTT (TJ-AG)
26130SBSTT (TJ-AG)
35134Cyclic (Colbourn-Keri)
68136Paley type (Colbourn)
72144Paley type (Colbourn)
80159SBSTT (TJ-AG)
84168Paley type (Colbourn)
90178Paley type (Colbourn)
98194Paley type (Colbourn)
102202Paley type (Colbourn)
103206Paley type (Colbourn)
104208Paley type (Colbourn)
108214Paley type (Colbourn)
110218Paley type (Colbourn)
114225SBSTT (TJ-AG)
122241SBSTT (TJ-AG)
128252Paley type (Colbourn)
132260Paley type (Colbourn)
138271SBSTT (TJ-AG)
140273SBSTT (TJ-AG)
143288SBSTT (TJ-AG)
150289SBSTT (TJ-AG)
152292SBSTT (TJ-AG)
155303SBSTT (TJ-AG)
158304SBSTT (TJ-AG)
164310SBSTT (TJ-AG)
168318SBSTT (TJ-AG)
170322SBSTT (TJ-AG)
174327SBSTT (TJ-AG)
180332SBSTT (TJ-AG)
192346SBSTT (TJ-AG)
194357SBSTT (TJ-AG)
359359Cyclic, derived (Colbourn-Keri)
378379Cyclic, derived (Colbourn-Keri)
379380Paley type (Colbourn)
431430Paley type (Colbourn)
433434Cyclotomy (Colbourn)
463462Paley type (Colbourn)
467466Paley type (Colbourn)
487486Paley type (Colbourn)
491490Paley type (Colbourn)
499498Paley type (Colbourn)
503503Cyclic, derived (Colbourn-Keri)
509509Cyclic, derived (Colbourn-Keri)
521521Cyclic, derived (Colbourn-Keri)
523523Cyclotomy (Colbourn)
541541Cyclotomy (Colbourn)
547547Cyclotomy (Colbourn)
557557Cyclotomy (Colbourn)
563563Cyclotomy (Colbourn)
569570Cyclotomy (Colbourn)
571571Cyclotomy (Colbourn)
577577Cyclotomy (Colbourn)
587587Cyclotomy (Colbourn)
593593Cyclotomy (Colbourn)
599599Cyclotomy (Colbourn)
601601Cyclotomy (Colbourn)
607607Cyclotomy (Colbourn)
613613Cyclotomy (Colbourn)
1230615Derive from strength 6
1282641Derive from strength 6
1318659Derive from strength 6
1360680Derive from strength 6
1366683Derive from strength 6
1372686Derive from strength 6
1380690Derive from strength 6
1422711Derive from strength 6
1426713Derive from strength 6
1428714Derive from strength 6
1438719Derive from strength 6
1446723Derive from strength 6
1458729Derive from strength 6
1482741Derive from strength 6
1486743Derive from strength 6
1492746Derive from strength 6
1498749Derive from strength 6
1510755Derive from strength 6
1522761Derive from strength 6
1548774Derive from strength 6
1558779Derive from strength 6
1566783Derive from strength 6
1570785Derive from strength 6
1578789Derive from strength 6
1582791Derive from strength 6
1690792Power CZ3-13.12-10.1
1859814Power CZ3-13.12-11.1
2198819Power CT13^3+1
2380938Power CT68^2,cT33c
4624940Power CT68^2,c
4707986Power CT73^2Arc(7)T2
4896988Power CT72^2,cT4c
5184996Power CT72^2,c
54401078Power CT80^2,cT12c
57601086Power CT80^2,cT8c
58671097Power CT81^2Arc(7)T2
64001101Power CT80^2,c
67201155Power CT84^2,cT4c
70561164Power CT84^2,c
72001215Power CT90^2,cT10c
75601224Power CT90^2,cT6c
81001234Power CT90^2,c
82321320Power CT98^2,cT14c
88201330Power CT98^2,cT8c
96041346Power CT98^2,c
98981394Power CT101^2,cT3c
100001402Power CT100^2,c
 Graph: