Table for CAN(5,k,8) for k up to 10000

Last Updated Fri Sep 15 07:41:46 MST 2017

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,8) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
932768orthogonal array
1053681orthogonal array fuse postop NCK
1361440Quad-Restricted SCPHF RE (C)
1465024Tri-Restricted SCPHF RE (C)
1565528SCPHF Random Extension (CLS)
2094200Quad-Restricted SCPHF RE (C)
2197784Tri-Restricted SCPHF RE (C)
2398288SCPHF Random Extension (CLS)
28122872Quad-Restricted SCPHF RE (C)
31126960Quad-Restricted SCPHF RE (C)
33130544Tri-Restricted SCPHF RE (C)
35131048SCPHF Random Extension (CLS)
43155632Quad-Restricted SCPHF RE (C)
47159720Quad-Restricted SCPHF RE (C)
50163304Tri-Restricted SCPHF RE (C)
51163752Path-Restricted SCPHF RE (C)
52163808SCPHF Random Extension (CLS)
58184304Quad-Restricted SCPHF RE (C)
64188392Quad-Restricted SCPHF RE (C)
70192480Quad-Restricted SCPHF RE (C)
81196568SCPHF Random Extension (CLS)
85217064Quad-Restricted SCPHF RE (C)
99221152Quad-Restricted SCPHF RE (C)
108225240Quad-Restricted SCPHF RE (C)
116229328SCPHF Random Extension (CLS)
123229370CPHF Random Extension (CLS)
131249824Quad-Restricted SCPHF RE (C)
145253912Quad-Restricted SCPHF RE (C)
161258000Quad-Restricted SCPHF RE (C)
183262088SCPHF Random Extension (CLS)
185262137CPHF Random Extension (CLS)
203282584Quad-Restricted SCPHF RE (C)
227286672Quad-Restricted SCPHF RE (C)
251290760Quad-Restricted SCPHF RE (C)
283294848SCPHF Random Extension (CLS)
426327608SCPHF Random Extension (CLS)
622360368SCPHF Random Extension (CLS)
623499920Add 1 factors
624578768Add 2 factors
625607440Add 3 factors
630636112Add 8 factors
673649447SCPHF Random Extension (CLS) fuse
674791015Add 1 factors
675869863Add 2 factors
676898535Add 3 factors
681927207Add 8 factors
6821044655Add 9 factors
7351048341perfect hash family3,930,621T195
9311081101perfect hash family3,931,622
13331372007Power N-CT43^2T12
14191375591Power N-CT43^2T10
15051376095Power N-CT43^2T8
18491400679Power N-CT43^2
20211433383Power N-CT47^2T4
22091437471Power N-CT47^2
22361453263Power N-CT53^2Arc(9)T3
22801453711Power N-CT53^2Arc(9)T2
23231474207Power N-CT53^2Arc(8)T2
23681474263Power N-CT53^2Arc(9)
24131494759Power N-CT53^2Arc(8)
24591515255Power N-CT53^2Arc(7)
25061535751Power N-CT53^2Arc(6)
25541556247Power N-CT53^2Arc(5)
26031576743Power N-CT53^2Arc(4)
26531597239Power N-CT53^2Arc(3)
27041617735Power N-CT53^2T1T1
27561638231Power N-CT53^2T1
27711646407Power N-CT59^2Arc(6)T7
28181650495Power N-CT59^2Arc(5)T7
28661654583Power N-CT59^2Arc(4)T7
28861654639Power N-CT59^2Arc(9)T2
29151658671Power N-CT59^2Arc(3)T7
29861658727Power N-CT59^2Arc(9)
30371662815Power N-CT59^2Arc(8)
30891666903Power N-CT59^2Arc(7)
31111670879Power N-CT61^2T10
31721670935Power N-CT61^2T9
31961675079Power N-CT59^2Arc(5)
32511679167Power N-CT59^2Arc(4)
33071683255Power N-CT59^2Arc(3)
33641687343Power N-CT59^2T1T1
35381691431Power N-CT61^2T3
37241695519Power N-CT61^2+3
39131720047Power N-CT67^2Trin3,3,3
40961724135Power N-CT67^2T3T3
43141728223Power N-CT71^2Arc(9)T2
44921732311Power N-CT67^2+3
45011736399Power N-CT71^2Arc(8)
45651740487Power N-CT71^2Arc(7)
46301744575Power N-CT71^2Arc(6)
46961748663Power N-CT71^2Arc(5)
47631752751Power N-CT71^2Arc(4)
48311756839Power N-CT71^2Arc(3)
50561760927Power N-CT79^2T15
55301765015Power N-CT79^2T9
62431769103Power N-CT79^2+2
64031892079Power N-CT83^2Trin2,2,2
65611912575Power N-CT83^2T2T2
67231933071Power N-CT83^2T2
68911953567Power N-CT83^2+2
78571965775Power N-CT97^2T16
82451986271Power N-CT97^2T12
94111990359Power N-CT97^2+2
96072014887Power N-CT101^2Trin2,2,2
98012018975Power N-CT101^2T2T2
100002023063perfect hash family9,10609,103T4