Table for CAN(5,k,9) for k up to 10000

Last Updated Sun Nov 19 11:04:53 MST 2017

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,9) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
kNSource
1059049orthogonal array
11110808extended OA (Colbourn)
131115374-Restricted SCPHF RE (CL)
151173693-Restricted SCPHF RE (CL)
16118089SCPHF Random Extension (CLS)
221705774-Restricted SCPHF RE (CL)
231764093-Restricted SCPHF RE (CL)
25177129SCPHF Random Extension (CLS)
322230654-Restricted SCPHF RE (CL)
342296174-Restricted SCPHF RE (CL)
382354493-Restricted SCPHF RE (CL)
39236193CPHF Random Extension (CLS)
482821054-Restricted SCPHF RE (CL)
522886574-Restricted SCPHF RE (CL)
562944893-Restricted SCPHF RE (CL)
582951372-Restricted SCPHF RE (CL)
60295209SCPHF Random Extension (CLS)
673345934-Restricted SCPHF RE (CL)
763411454-Restricted SCPHF RE (CL)
843476974-Restricted SCPHF RE (CL)
893535293-Restricted SCPHF RE (CL)
913541772-Restricted SCPHF RE (CL)
92354249SCPHF Random Extension (CLS)
95354289CPHF Random Extension (CLS)
1033936334-Restricted SCPHF RE (CL)
1154001854-Restricted SCPHF RE (CL)
1324067374-Restricted SCPHF RE (CL)
1404125693-Restricted SCPHF RE (CL)
1424132172-Restricted SCPHF RE (CL)
143413337CPHF Random Extension (CLS)
1644526734-Restricted SCPHF RE (CL)
1814592254-Restricted SCPHF RE (CL)
2104657774-Restricted SCPHF RE (CL)
2204716093-Restricted SCPHF RE (CL)
2294722572-Restricted SCPHF RE (CL)
374531369SCPHF Random Extension (CLS)
568590409SCPHF Random Extension (CLS)
673649449SCPHF Random Extension (CLS)
674889137Add 1 factors
6751034937Add 2 factors
6761087425Add 3 factors
6821139913Add 9 factors
6831379601Add 9 factors
6841525401Add 9 factors
6851577889Add 9 factors
7281610407SCPHF Random Extension (CLS) fuse fuse
8501771224perfect hash family3,850,568
9031889304perfect hash family3,1008,673T105
10081948344perfect hash family3,1008,673
11122055410Martirosyan-Colbourn
11362061170Martirosyan-Colbourn
11922120210Martirosyan-Colbourn
13462125970Martirosyan-Colbourn
13702354480Power N-CT37^2+1
14502361632perfect hash family4,1450,568
14822446368Power N-CT41^2T3T2
15212447112Power N-CT41^2T2T2
18702479712perfect hash family4,3125,625T251
28402538752perfect hash family4,3125,625T57
31252597792perfect hash family4,3125,625
31362655432Power N-CT59^2T3T3
31392655936Power N-CT59^2Arc(3)T3
31932656008Power N-CT59^2Arc(2)T3
32482656080Power N-CT59^2T3T1
33042656152Power N-CT59^2T3
33072656656Power N-CT59^2Arc(3)
33642656728Power N-CT59^2T1T1
34222656800Power N-CT59^2T1
34822656872Power N-CT59^2+1
34832853792Power N-CT61^2Arc(4)
35412893176Power N-CT61^2Arc(3)
36002932560Power N-CT61^2T1T1
37522971224Power N-CT67^2T11
38862971872Power N-CT67^2T9
40202971944Power N-CT67^2T7
44893011328Power N-CT67^2
48913063744Power N-CT73^2T6
53323070296Power N-CT73^2+3
55573109608Power N-CT79^2Trin3,3,3
57763116160Power N-CT79^2T3T3
63083122712Power N-CT83^2T7
68903129264Power N-CT83^2+1
70563170088Power N-CT89^2T5T5
74763175920Power N-CT89^2T5
79213181752Power N-CT89^2
79233187584Power N-CT89^2+2
79243188232Power N-CT89^2+3
79273188592perfect hash family9,7927,95
79353267280perfect hash family9,8536,96S7
80183306624perfect hash family9,8536,96S6
81023345968perfect hash family9,8536,96S5
81873385312perfect hash family9,8536,96S4
82813423896Power N-CT97^2Trin2,2,8
84673424544Power N-CT97^2Trin2,2,6
85603424616Power N-CT97^2Trin2,2,5
88393424656Power N-CT97^2Trin2,2,2
90253464000Power N-CT97^2T2T2
91673502584perfect hash family9,10609,103T14
93733503232perfect hash family9,10609,103T12
94763503304perfect hash family9,10609,103T11
97853503344perfect hash family9,10609,103T8
100003542688Power N-CT101^2
 Graph: