Table for CAN(6,k,17) for k up to 10000

Last Updated Sat Sep 16 02:03:55 MST 2017

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;6,k,17) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - Change v: - + or go to Global Menu.
kNSource
1824137569orthogonal array
1946771760extended OA (Colbourn)
2047045877orthogonal array fuse fuse
2370992833Quint-Restricted SCPHF RE (C)
2572329169Quad-Restricted SCPHF RE (C)
2772412673SCPHF Random Extension (CLS)
3593710545Quint-Restricted SCPHF RE (C)
3895130385Quint-Restricted SCPHF RE (C)
4296550225SCPHF Random Extension (CLS)
53117848097Quint-Restricted SCPHF RE (C)
57119267937Quint-Restricted SCPHF RE (C)
66120687777SCPHF Random Extension (CLS)
77140565809Quint-Restricted SCPHF RE (C)
86141985649Quint-Restricted SCPHF RE (C)
96143405489Quint-Restricted SCPHF RE (C)
106144825329SCPHF Random Extension (CLS)
177168962881SCPHF Random Extension (CLS)
178168962977CPHF Random Extension (CLS)
268193100433SCPHF Random Extension (CLS)
269302601377Add 1 factors
270347958193Add 2 factors
289386200849perfect hash family16,289,17,c
290386201088Power CT17^2+1
291495702032Add 1 factors
292541132832Add 2 factors
293585231920Add 3 factors
294607949632Add 4 factors
306630667105Add 17 factors
307630667344Add 17 factors
324703079762Power CT19^2T1T1
342725713953Power CT19^2T1
361748348144Power CT19^2
362752734016Power CT19^2+1
513772401681perfect hash family32,513,17,c
514772402176perfect hash family32,514,18
536900030660Martirosyan-TVT
620965502160perfect hash family5,620,268
6211100453600Add 1 factors
6251157266688Power CT25^2
6751158519248Power CT27^2T2
7541158602592perfect hash family6,754,268
7551294885744Add 1 factors
7601300778948Power N-CT41^2T21T3
7791301924671Power N-CT41^2T22
8201302198788Power N-CT41^2T21
8821323306064Power N-CT41^2Trin3,6,14
8841324642400Power N-CT41^2Trin3,3,16
9541324725904Power N-CT41^2Trin3,3,14
10261326145744Power N-CT41^2T14T3
11071327565584Power N-CT41^2T14
11381344603936Power N-CT41^2Trin3,6,6
12341346023776Power N-CT41^2Trin3,3,6
13391347443616Power N-CT41^2Trin3,3,3
14441348863456Power N-CT41^2T3T3
15581350283296Power N-CT41^2T3
16821351703136Power N-CT41^2+1
16831510699376Add 1 factors
17231585979728Power N-CT43^2Arc(3)
17641607277600Power N-CT43^2T1T1
18551625735792Power N-CT53^2T18
20141627155632Power N-CT53^2T15
22261628575472Power N-CT53^2T11
28091649873344Power N-CT53^2
28131669751104perfect hash family14,2813,57
29191683949504Power N-CT59^2Trin2,2,6
31391685369344Power N-CT59^2Trin2,2,2
32491686789184Power N-CT59^2T2T2
34771688209024Power N-CT61^2T4
37261689628864perfect hash family14,3726,66
37511729384928Power N-CT67^2Arc(12)
38071749262960Power N-CT67^2Arc(11)
39431767721408Power N-CT73^2Trin7,7,7
43561787599440Power N-CT73^2T7T7
48181807477472Power N-CT73^2T7
49541821675872Power N-CT79^2Trin2,2,13
50821823095712Power N-CT79^2T13T2
54781824515552Power N-CT83^2T17
54871838713952Power N-CT89^2Trin3,3,23
56761840133792Power N-CT89^2T23T3
58741841553632Power N-CT89^2T23
59291842973744Power N-CT79^2T2T2
63911844393584Power N-CT83^2T6
68921845813424Power N-CT83^2+3
71471860011824Power N-CT89^2Trin3,3,3
73961861431664Power N-CT89^2T3T3
80581862851504Power N-CT97^2Arc(13)T2
82261864271344Power N-CT97^2Arc(13)
83111865691184Power N-CT97^2Arc(12)
83971867111024Power N-CT97^2Arc(11)
84841868530864Power N-CT97^2Arc(10)
85721869950704Power N-CT97^2Arc(9)
86611871370544Power N-CT97^2Arc(8)
87511872790384Power N-CT97^2Arc(7)
88421874210224Power N-CT97^2Arc(6)
89341875630064Power N-CT97^2Arc(5)
90271877049904Power N-CT97^2Arc(4)
91211878469744Power N-CT97^2Arc(3)
92161879889584Power N-CT97^2T1T1
98881881309424perfect hash family13,10609,103T7
100001882729264Power N-CT101^2
 Graph: