Table for CAN(6,k,25) for k up to 10000

Last Updated Sat Sep 16 02:03:55 MST 2017

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;6,k,25) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - Change v: - or go to Global Menu.
kNSource
26244140625orthogonal array
28387420485orthogonal array fuse fuse
30594823313orthogonal array fuse fuse fuse fuse
31732421825SCPHF Random Extension (CLS)
32887503669orthogonal array fuse fuse fuse fuse fuse fuse
43957031225Quint-Restricted SCPHF RE (C)
48966796825Quint-Restricted SCPHF RE (C)
56976562425SCPHF Random Extension (CLS)
761201171825Quint-Restricted SCPHF RE (C)
821210937425Quint-Restricted SCPHF RE (C)
941220703025SCPHF Random Extension (CLS)
961220703121CPHF Random Extension (CLS)
1691464843625SCPHF Random Extension (CLS)
2651708984225SCPHF Random Extension (CLS)
2662646439225Add 1 factors
2673114814225Add 2 factors
2683574189225Add 3 factors
2693808564225Add 4 factors
6253906249625perfect hash family16,625,25,c
6263906249984Power CT25^2+1
6275049624984Add 1 factors
6285518359984Add 2 factors
6515768888164Power CT27^2Arc(3)
6765912168024Power CT27^2T1T1
7026055447884Power CT27^2T1
7306198727744Power CT27^2+1
7317576822744Add 1 factors
7328167237744Add 2 factors
7578300141196Power N-CT29^2Arc(3)
7848507544024Power N-CT29^2T1T1
8128714946852Power N-CT29^2T1
8428922349680Power N-CT29^2+1
84310300444680Add 1 factors
87110573531824Power N-CT31^2Arc(3)
90010711130336Power N-CT31^2T1T1
93010848728848Power N-CT31^2T1
96110986327360Power N-CT31^2
120211190652900Martirosyan-TVT
120311191402300Martirosyan-TVT variant
125011192152276Martirosyan-TVT
125111250217635Martirosyan-TVT variant
125211308282635Martirosyan-TVT
125412451657635Martirosyan-TVT
145812679289085perfect hash familyD16,1458,54^11 27^5
148413082731996Power N-CT53^2T25
159013290134824Power N-CT53^2T23
184913398437136Power N-CT43^2
202113525389936Power N-CT47^2T4
221013535155536Power N-CT47^2+1
230413652342736Power N-CT53^2T5T5
254413662108336Power N-CT53^2T5
281213671873936Power N-CT53^2+3
313615166014912Power N-CT73^2T17T17
313915371093112Power N-CT73^2T30
350415380858712Power N-CT73^2T25
408815390624312Power N-CT73^2T17
409715488280312Power N-CT79^2Trin3,3,23
425615498045912Power N-CT79^2T23T3
442415507811512Power N-CT79^2T23
443015585936312Power N-CT83^2Arc(4)T27
448315595701912Power N-CT83^2Arc(3)T27
453715605467512Power N-CT83^2Arc(2)T27
459215615233112Power N-CT83^2T27T1
533215615233712Power N-CT73^2+3
696615615234360Power N-CT97^2Arc(13)T15
797415624999960Power N-CT97^2Arc(13)T3
805815625000056Power N-CT97^2Arc(13)T2
822615869140560Power N-CT97^2Arc(13)
831116113281064Power N-CT97^2Arc(12)
839716357421568Power N-CT97^2Arc(11)
848416601562072Power N-CT97^2Arc(10)
857216845702576Power N-CT97^2Arc(9)
866117089843080Power N-CT97^2Arc(8)
875117333983584Power N-CT97^2Arc(7)
884217578124088Power N-CT97^2Arc(6)
893417822264592Power N-CT97^2Arc(5)
902718066405096Power N-CT97^2Arc(4)
935118088839984Power CT31^3T5S30
966218226438496Power CT31^3T5S29
1000018232119844Power CT31^3T3S30
 Graph: