Table for CAN(3,k,23) for k up to 10000

Last Updated Tue Nov 18 04:23:58 MST 2014

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;3,k,23) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
2412167orthogonal array
2515612orthogonal array fuse fuse postop NCK
2615613orthogonal array fuse fuse postop NCK
2719524orthogonal array fuse fuse fuse fuse postop NCK
2819549orthogonal array fuse fuse fuse fuse postop NCK
4823805Chateauneuf-Kreher doubling
65131245Raaphorst-Moura-Stevens fuse fuse
75739357Raaphorst-Moura-Stevens fuse fuse fuse fuse
110647103Chateauneuf-Kreher doubling
115054015Chateauneuf-Kreher doubling
115254477Chateauneuf-Kreher doubling
119655005Chateauneuf-Kreher doubling
119855467Chateauneuf-Kreher doubling
124855489Chateauneuf-Kreher doubling
128855973Chateauneuf-Kreher doubling
130055995Chateauneuf-Kreher doubling
130256017Chateauneuf-Kreher doubling