# Table for CAN(5,k,22) for k up to 10000

#### Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,22) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
 k N Source 6 5153632 Derive from strength 6 7 6194819 Add a symbol 24 6436341 orthogonal array fuse 26 9765619 orthogonal array fuse fuse fuse 28 14348897 orthogonal array fuse fuse fuse fuse fuse 31 19308981 perfect hash family3,31,23,c fuse 32 19309020 perfect hash family3,32,24 33 25031488 Martirosyan-TVT variant 34 25059960 Martirosyan-TVT 35 25061010 Martirosyan-TVT variant 36 25062060 Martirosyan-TVT 37 25074135 Martirosyan-TVT variant 43 25086210 Martirosyan-TVT variant 48 25110540 Martirosyan-TVT 49 32529350 Martirosyan-TVT variant 50 34354570 Martirosyan-TVT 51 34363018 Martirosyan-TVT variant 52 36887812 Martirosyan-TVT 64 45054261 perfect hash family7,64,23,c fuse 65 45054380 perfect hash family7,65,24 79 51490581 perfect hash family8,79,23,c fuse 80 51490720 perfect hash family8,80,24 101 57926901 perfect hash family9,101,23,c fuse 102 57927060 perfect hash family9,102,24 138 63080691 Power N-CT23^2T17 161 64121878 Power N-CT23^2T16 530 64363400 Power N-CT23^2+1 531 75604322 Add 1 factors 532 85869962 Add 2 factors 533 93315246 Add 3 factors 534 96663848 Add 4 factors 553 97433964 Power CT25^2Arc(3) 576 100763242 Power CT25^2T1T1 600 104092520 Power CT25^2T1 625 107421619 perfect hash family11,625,25,c fuse fuse fuse 626 107421798 Power CT25^2+1 627 121856064 Add 1 factors 2116 128726800 Power CT23^3Tlev 3174 133880431 Power CT23^3T17 3703 134921618 Power CT23^3T16 10000 135162741 perfect hash family21,12167,23,c fuse
Graph: