# Table for CAN(5,k,23) for k up to 10000

#### Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,23) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - + or go to Global Menu.
 k N Source 24 6436343 orthogonal array 26 9765621 orthogonal array fuse fuse 28 14348899 orthogonal array fuse fuse fuse fuse 31 19308983 perfect hash family3,31,23,c 32 19309026 perfect hash family3,32,24 48 25465531 Martirosyan-TVT 49 33054374 Martirosyan-TVT variant 50 37593267 Martirosyan-TVT 51 37593883 Martirosyan-TVT variant 52 37594499 Martirosyan-TVT 64 45054263 perfect hash family7,64,23,c 65 45054394 perfect hash family7,65,24 79 51490583 perfect hash family8,79,23,c 80 51490736 perfect hash family8,80,24 101 57926903 perfect hash family9,101,23,c 102 57927078 perfect hash family9,102,24 112 64363223 perfect hash family10,112,23,c 530 64363420 Power N-CT23^2+1 531 76675918 Add 1 factors 532 88721248 Add 2 factors 533 94877750 Add 3 factors 553 97433986 Power CT25^2Arc(3) 576 100763264 Power CT25^2T1T1 600 104092542 Power CT25^2T1 625 107421621 perfect hash family11,625,25,c fuse fuse 626 107421820 Power CT25^2+1 627 123231790 Add 1 factors 2116 128726840 Power CT23^3Tlev 10000 135162743 perfect hash family21,12167,23,c
Graph: