Table for CAN(6,k,19) for k up to 10000

Last Updated Fri Mar 27 17:29:25 MST 2015

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;6,k,19) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - Change v: - + or go to Global Menu.
2047045881orthogonal array
2191485342extended OA (Colbourn)
22136055124Add 1 factors
24148035881orthogonal array fuse fuse fuse fuse
25188183467perfect hash family4,25,19,c
27188183520perfect hash family4,27,20
38225325009double OA (Colbourn-Zhou)
40227794249double OA (Colbourn-Zhou)
41359028199Add 1 factors
42423412777perfect hash family9,42,19,c
45423412920perfect hash family9,45,20
47470458639perfect hash family10,47,19,c
51470458800perfect hash family10,51,20
53517504501perfect hash family11,53,19,c
60517504680perfect hash family11,60,20
64564550560perfect hash family12,64,20
65658642320perfect hash family14,65,20
95705687949perfect hash family15,95,19,c
96705688200perfect hash family15,96,20
361752733811perfect hash family16,361,19,c
362752734080Power CT19^2+1
363968422194Add 1 factors
3641057555260Add 2 factors
3651144349046Add 3 factors
3661188918828Add 4 factors
3801233488341Add 19 factors
3811233488610Add 19 factors
3821473622200Add 19 factors
5151505467603perfect hash family32,515,19,c
5161505468160perfect hash family32,516,20
5171850044446Add 1 factors
5182008108296Add 2 factors
5192070018720perfect hash family44,519,20
5202117063809perfect hash family45,520,19,c
5222117064600perfect hash family45,522,20
5232199350377Add 19 factors
5252199597301Add 19 factors
5292199720763Add 19 factors
5322199844225Add 19 factors
5342199967687Add 19 factors
5352199968244Add 19 factors
7232323554645Martirosyan-TVT variant
7342996903470Add 19 factors
7392997026932Add 19 factors
7412997150394Add 19 factors
7423047399697Add 19 factors
8083149508743Power N-CT41^2T14S13
11343186650232Power N-CT41^2T3S13
11983189119472Power N-CT41^2Arc(14)
12263320353422Power N-CT41^2Arc(13)
13703379875120Power N-CT37^2+1
13723416913720Power N-CT37^2+3
13733885939702Add 1 factors
13813976523172Power N-CT41^2Arc(8)
14154107757122Power N-CT41^2Arc(7)
14504238991072Power N-CT41^2Arc(6)
14864370225022Power N-CT41^2Arc(5)
15234501458972Power N-CT41^2Arc(4)
15614632692922Power N-CT41^2Arc(3)
16004763926872Power N-CT41^2T1T1
16404895160822Power N-CT41^2T1
16815026394772Power N-CT41^2
16825495420754Add 1 factors
16835709003516Add 2 factors
17205732162195Power N-CT43^2T3
17225863396002Power N-CT43^2T2T1
17635863396145Power N-CT43^2T2
17645927780580Power N-CT43^2T1T1
18065927780723Power N-CT43^2T1
18515927780866Power N-CT43^2+2
18806343756542Power N-CT47^2T7
19396445283775Power N-CT47^2Trin2,2,2
80006450237864Power CT31^3T11T11T11
84006494677325Power CT31^3T11T11T10
88206539116786Power CT31^3T11T10T10
96006551227864Power CT31^3T11T11T7
100006591375450Power CT31^3T11T11T6