# Table for CAN(6,k,23) for k up to 10000

#### Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;6,k,23) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - Change v: - + or go to Global Menu.
 k N Source 24 148035889 orthogonal array 26 244140621 orthogonal array fuse fuse 28 387420481 orthogonal array fuse fuse fuse fuse 31 592143487 perfect hash family4,31,23,c 32 688248284 perfect hash family4,35,25S3 46 714434073 double OA (Colbourn-Zhou) 48 720858249 double OA (Colbourn-Zhou) 49 1003609885 Martirosyan-TVT variant 50 1181640621 double OA (Colbourn-Zhou) fuse fuse 51 1183979511 Martirosyan-TVT variant 52 1183995124 Martirosyan-TVT 54 1480358683 perfect hash family10,54,23,c 55 1480358880 perfect hash family10,55,24 63 1628394549 perfect hash family11,63,23,c 64 1628394768 perfect hash family11,64,24 67 1776430415 perfect hash family12,67,23,c 68 1776430656 perfect hash family12,68,24 69 1924466544 perfect hash family13,69,24 70 1966334239 Add 23 factors 71 1972223067 Add 23 factors 72 2072502432 perfect hash family14,72,24 115 2220538013 perfect hash family15,115,23,c 529 2368573879 perfect hash family16,529,23,c 530 2368574208 Power CT23^2+1 531 3057834758 Add 1 factors 532 3341022212 Add 2 factors 553 3617935724 Power CT25^2Arc(3) 576 3714040456 Power CT25^2T1T1 600 3810145188 Power CT25^2T1 625 3906249621 perfect hash family16,625,25,c fuse fuse 626 3906249920 Power CT25^2+1 627 4869769554 Add 1 factors 628 5233398864 Add 2 factors 629 5534264440 Add 3 factors 630 5675863986 Add 4 factors 648 5708143451 Add 23 factors 651 5768888100 Power CT27^2Arc(3) 676 5912167960 Power CT27^2T1T1 702 6055447820 Power CT27^2T1 730 6198727680 Power CT27^2+1 1058 7196366258 Martirosyan-TVT 1059 7256593237 Martirosyan-TVT variant 1060 7316819887 Martirosyan-TVT 1062 8276955393 Martirosyan-TVT 1064 8825140107 Martirosyan-TVT 1066 9237496663 Martirosyan-TVT 1104 9293733855 Martirosyan-TVT 1105 9371972610 Martirosyan-TVT variant 1106 9450211365 Martirosyan-TVT 1128 9519193112 Power N-CT47^2T23 1147 9596025316 Power N-CT47^2Arc(3)T21 1171 9602449492 Power N-CT47^2Arc(2)T21 1196 9608873668 Power N-CT47^2T21T1 1222 9615297844 Power N-CT47^2T21 1235 9739305176 Power N-CT47^2Arc(3)T19 1261 9745729352 Power N-CT47^2Arc(2)T19 1288 9752153528 Power N-CT47^2T19T1 1316 9758577704 Power N-CT47^2T19 1333 9879786422 Power N-CT43^2T12 1339 9937604006 Power N-CT47^2Arc(4)T16 1367 9944028182 Power N-CT47^2Arc(3)T16 1396 9950452358 Power N-CT47^2Arc(2)T16 1426 9956876534 Power N-CT47^2T16T1 1457 9963300710 Power N-CT47^2T16 1852 10002077008 Power N-CT43^2+3 1861 10040622064 Power N-CT47^2Arc(8) 1901 10047046240 Power N-CT47^2Arc(7) 1942 10053470416 Power N-CT47^2Arc(6) 1984 10059894592 Power N-CT47^2Arc(5) 2027 10066318768 Power N-CT47^2Arc(4) 2071 10072742944 Power N-CT47^2Arc(3) 2116 10079167120 Power N-CT47^2T1T1 2162 10085591296 Power N-CT47^2T1 2210 10092015472 Power N-CT47^2+1 2211 11593923154 Add 1 factors 2212 12277550912 Add 2 factors 2213 12690036546 Add 3 factors 2214 12831636092 Add 4 factors 2233 12973235638 Add 23 factors 2235 13781923672 Add 25 factors 2257 15209503236 Power CT49^2Arc(3) 2304 15492254872 Power CT49^2T1T1 2352 15775006508 Power CT49^2T1 2401 16057758144 Power CT49^2 10000 17024125272 Power CT31^3T13T7T7
Graph: