Table for CAN(6,k,25) for k up to 10000

Last Updated Fri Mar 27 17:29:25 MST 2015

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;6,k,25) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - Change v: - or go to Global Menu.
26244140625orthogonal array
28387420485orthogonal array fuse fuse
30594823313orthogonal array fuse fuse fuse fuse
32887503669orthogonal array fuse fuse fuse fuse fuse fuse
35976562425perfect hash family4,35,25,c
501181640625double OA (Colbourn-Zhou)
521191390625double OA (Colbourn-Zhou)
531615567282Martirosyan-TVT variant
572441406240perfect hash family10,57,26
652685546625perfect hash family11,65,25,c
662685546864perfect hash family11,66,26
692929687225perfect hash family12,69,25,c
722929687488perfect hash family12,72,26
753237001225Add 25 factors
763246751225Add 25 factors
773270001225Add 25 factors
803417968736perfect hash family14,80,26
1253662109025perfect hash family15,125,25,c
6253906249625perfect hash family16,625,25,c
6263906249984Power CT25^2+1
6275049624984Add 1 factors
6285518359984Add 2 factors
6515768888164Power CT27^2Arc(3)
6765912168024Power CT27^2T1T1
7026055447884Power CT27^2T1
7306198727744Power CT27^2+1
7317756011544Add 1 factors
7578300141196Power N-CT29^2Arc(3)
7848507544024Power N-CT29^2T1T1
8128714946852Power N-CT29^2T1
8428922349680Power N-CT29^2+1
84310749710280Add 1 factors
84411481245280Add 2 factors
125112221530971Martirosyan-TVT variant
130115174634352Martirosyan-TVT variant
131615748748596Power N-CT47^2T19
141015956151424Power N-CT47^2T17
150416248831780Power N-CT47^2T15
164516337890536Power N-CT47^2T12
221216542968736Power N-CT47^2+3
223917527822050Power N-CT53^2Arc(12)
228117951998707Power N-CT53^2Arc(11)
935118088839984Power CT31^3T5S30
1000018232119844Power CT31^3T3S30