# Table for CAN(5,k,2) for k up to 10000

#### Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,2) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: + or go to Global Menu.
 k N Source 6 32 orthogonal array 7 42 Special (Yan Jun) 8 52 Steiner system (CKRS) 9 54 Steiner system (CKRS) 10 56 Steiner system (CKRS) 14 64 cross-sum (CKRS) 15 79 simulated annealing (Torres-Jimenez) 16 98 SBSTT (TJ-AG) 20 99 SBSTT (TJ-AG) 21 109 SBSTT (TJ-AG) 22 111 SBSTT (TJ-AG) 23 114 SBSTT (TJ-AG) 24 117 SBSTT (TJ-AG) 25 118 SBSTT (TJ-AG) 26 130 SBSTT (TJ-AG) 35 134 Cyclic (Colbourn-Keri) 68 136 Paley type (Colbourn) 72 144 Paley type (Colbourn) 80 159 SBSTT (TJ-AG) 84 168 Paley type (Colbourn) 90 178 Paley type (Colbourn) 98 194 Paley type (Colbourn) 102 202 Paley type (Colbourn) 103 206 Paley type (Colbourn) 104 208 Paley type (Colbourn) 108 214 Paley type (Colbourn) 110 218 Paley type (Colbourn) 114 225 SBSTT (TJ-AG) 122 241 SBSTT (TJ-AG) 128 252 Paley type (Colbourn) 132 260 Paley type (Colbourn) 138 271 SBSTT (TJ-AG) 140 273 SBSTT (TJ-AG) 143 288 SBSTT (TJ-AG) 150 289 SBSTT (TJ-AG) 152 292 SBSTT (TJ-AG) 155 303 SBSTT (TJ-AG) 158 304 SBSTT (TJ-AG) 164 310 SBSTT (TJ-AG) 168 318 SBSTT (TJ-AG) 170 322 SBSTT (TJ-AG) 174 327 SBSTT (TJ-AG) 180 332 SBSTT (TJ-AG) 192 346 SBSTT (TJ-AG) 194 357 SBSTT (TJ-AG) 359 359 Cyclic, derived (Colbourn-Keri) 378 379 Cyclic, derived (Colbourn-Keri) 379 380 Paley type (Colbourn) 431 430 Paley type (Colbourn) 433 434 Cyclotomy (Colbourn) 463 462 Paley type (Colbourn) 467 466 Paley type (Colbourn) 487 486 Paley type (Colbourn) 491 490 Paley type (Colbourn) 499 498 Paley type (Colbourn) 503 503 Cyclic, derived (Colbourn-Keri) 509 509 Cyclic, derived (Colbourn-Keri) 521 521 Cyclic, derived (Colbourn-Keri) 523 523 Cyclotomy (Colbourn) 541 541 Cyclotomy (Colbourn) 547 547 Cyclotomy (Colbourn) 557 557 Cyclotomy (Colbourn) 563 563 Cyclotomy (Colbourn) 569 570 Cyclotomy (Colbourn) 571 571 Cyclotomy (Colbourn) 577 577 Cyclotomy (Colbourn) 587 587 Cyclotomy (Colbourn) 593 593 Cyclotomy (Colbourn) 599 599 Cyclotomy (Colbourn) 601 601 Cyclotomy (Colbourn) 607 607 Cyclotomy (Colbourn) 613 613 Cyclotomy (Colbourn) 1230 615 Derive from strength 6 1282 641 Derive from strength 6 1318 659 Derive from strength 6 1360 680 Derive from strength 6 1366 683 Derive from strength 6 1372 686 Derive from strength 6 1380 690 Derive from strength 6 1422 711 Derive from strength 6 1426 713 Derive from strength 6 1428 714 Derive from strength 6 1438 719 Derive from strength 6 1446 723 Derive from strength 6 1458 729 Derive from strength 6 1482 741 Derive from strength 6 1486 743 Derive from strength 6 1492 746 Derive from strength 6 1498 749 Derive from strength 6 1510 755 Derive from strength 6 1522 761 Derive from strength 6 1548 774 Derive from strength 6 1558 779 Derive from strength 6 1566 783 Derive from strength 6 1570 785 Derive from strength 6 1578 789 Derive from strength 6 1582 791 Derive from strength 6 1690 792 Power CZ3-13.12-10.1 1859 814 Power CZ3-13.12-11.1 2198 819 Power CT13^3+1 2380 938 Power CT68^2,cT33c 4624 940 Power CT68^2,c 4707 986 Power CT73^2Arc(7)T2 4896 988 Power CT72^2,cT4c 5184 996 Power CT72^2,c 5440 1078 Power CT80^2,cT12c 5760 1086 Power CT80^2,cT8c 5867 1097 Power CT81^2Arc(7)T2 6400 1101 Power CT80^2,c 6720 1155 Power CT84^2,cT4c 7056 1164 Power CT84^2,c 7200 1215 Power CT90^2,cT10c 7560 1224 Power CT90^2,cT6c 8100 1234 Power CT90^2,c 8232 1320 Power CT98^2,cT14c 8820 1330 Power CT98^2,cT8c 9604 1346 Power CT98^2,c 9898 1394 Power CT101^2,cT3c 10000 1402 Power CT100^2,c
Graph: