Table for CAN(5,k,25) for k up to 10000

Last Updated Sun May 8 14:02:10 MST 2016

Locate the k in the first column that is at least as large as the number of factors in which you are interested. Then let N be the number of rows (tests) given in the second column. A CA(N;5,k,25) exists according to a construction in the reference (cryptically) given in the third column. The accompanying graph plots N vertically against log k (base 10).

Change t: - + Change v: - or go to Global Menu.
269765625orthogonal array
2814348903orthogonal array fuse fuse
3020511141orthogonal array fuse fuse fuse fuse
3228629139orthogonal array fuse fuse fuse fuse fuse fuse
3329296825perfect hash family3,33,25,c
3429296872perfect hash family3,34,26
5349168391Martirosyan-TVT variant
6858593744perfect hash family6,81,27S6
7063177022perfect hash family6,81,27S5
7267760300perfect hash family6,81,27S4
7472343578perfect hash family6,81,27S3
7676926856perfect hash family6,81,27S2
8178124825perfect hash family8,81,25,c
8278124992perfect hash family8,82,26
10387890425perfect hash family9,103,25,c
10487890616perfect hash family9,104,26
11497656025perfect hash family10,114,25,c
53297656240Power N-CT23^2+3
625107421625perfect hash family11,625,25,c
626107421864Power CT25^2+1
627126171264Add 1 factors
651144088088Power CT27^2Arc(3)
676148671366Power CT27^2T1T1
702153254644Power CT27^2T1
730157837922Power CT27^2+1
731180462448Power N-CT29^2Arc(4)
757186624686Power N-CT29^2Arc(3)
784192786924Power N-CT29^2T1T1
2500195312480Power CT25^3Tlev
10000205077625perfect hash family21,15625,25,c